HDU 2841:Visible Trees ← 容斥原理

2024-01-07 05:52

本文主要是介绍HDU 2841:Visible Trees ← 容斥原理,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

【题目来源】
http://acm.hdu.edu.cn/showproblem.php?pid=2841

【题目描述】
There are many trees forming a m * n grid, the grid starts
from (1,1). Farmer Sherlock is standing at (0,0) point. He wonders how many trees he can see.
If two trees and Sherlock are in one line, Farmer Sherlock can only see the tree nearest to him.

【输入格式】
The first line contains one integer t, represents the number of test cases. Then there are multiple test cases. For each test case there is one line containing two integers m and n(1 ≤ m, n ≤ 100000)

【输出格式】
For each test case output one line represents the number of trees Farmer Sherlock can see.

【输入样例】
2
1 1
2 3

【输出样例】
1
5

【算法分析】
在计数时,必须注意无一重复,无一遗漏。为了使重叠部分不被重复计算,人们研究出一种计数方法,这种方法的基本思想是:先不考虑重叠的情况,把包含于某内容中的所有对象的数目先计算出来,然后再把计数时重复计算的数目排斥出去,使得计算的结果既无遗漏又无重复,这种计数的方法称为
容斥原理

针对本题,显然,若 (x,y) 能被看到,那么 (k*x, k*y) 都不能被看到(其中,k>1)。
因此,问题转化为求 1<=x<=n 且 1<=y<=m 有多个 <x,y> 满足 gcd(x,y)=1。
那么可以从 1~n 枚举 x,累计 1~m 中与 x 互质的个数。
对 x 分解素因子,容斥一下就可得到结果。

【算法代码】

#include <iostream>
#include <vector>
using namespace std;typedef long long LL;
vector<int> v;
int n,m;void pfac(int x) { //Find all the prime factors of xv.clear();for(int i=2; i*i<=x; i++) {if(x%i==0) {v.push_back(i);while(x%i==0) x/=i;}}if(x>1) v.push_back(x);
}int solve(int x) {int sum=0;for(int i=1; i<(1<<v.size()); i++) {int res=1,cnt=0;for(int j=0; j<v.size(); j++) {if(i & (1<<j)) {res*=v[j];cnt++;}}if(cnt & 1) sum+=x/res;else sum-=x/res;}return sum;
}int main() {int T;cin>>T;while(T--) {scanf("%d %d",&n,&m); //cin>>n>>m;LL ans=m;for(int i=2; i<=n; i++) {pfac(i);ans+=m-solve(m);}printf("%lld\n",ans);}
}/*
in:
2
1 1
2 3out:
1
5
*/




【参考文献】
https://www.cnblogs.com/00isok/p/10358598.html
https://blog.csdn.net/weixin_53746961/article/details/121175561
https://blog.csdn.net/weixin_43846139/article/details/105517437
https://www.cnblogs.com/crackpotisback/p/4846909.html
http://www.manongjc.com/detail/39-wpncookuuhcoyui.html
https://blog.csdn.net/weixin_30710457/article/details/98919034




 

这篇关于HDU 2841:Visible Trees ← 容斥原理的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/578917

相关文章

从原理到实战深入理解Java 断言assert

《从原理到实战深入理解Java断言assert》本文深入解析Java断言机制,涵盖语法、工作原理、启用方式及与异常的区别,推荐用于开发阶段的条件检查与状态验证,并强调生产环境应使用参数验证工具类替代... 目录深入理解 Java 断言(assert):从原理到实战引言:为什么需要断言?一、断言基础1.1 语

MySQL中的表连接原理分析

《MySQL中的表连接原理分析》:本文主要介绍MySQL中的表连接原理分析,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、背景2、环境3、表连接原理【1】驱动表和被驱动表【2】内连接【3】外连接【4编程】嵌套循环连接【5】join buffer4、总结1、背景

深度解析Spring AOP @Aspect 原理、实战与最佳实践教程

《深度解析SpringAOP@Aspect原理、实战与最佳实践教程》文章系统讲解了SpringAOP核心概念、实现方式及原理,涵盖横切关注点分离、代理机制(JDK/CGLIB)、切入点类型、性能... 目录1. @ASPect 核心概念1.1 AOP 编程范式1.2 @Aspect 关键特性2. 完整代码实

Java Stream的distinct去重原理分析

《JavaStream的distinct去重原理分析》Javastream中的distinct方法用于去除流中的重复元素,它返回一个包含过滤后唯一元素的新流,该方法会根据元素的hashcode和eq... 目录一、distinct 的基础用法与核心特性二、distinct 的底层实现原理1. 顺序流中的去重

Spring @Scheduled注解及工作原理

《Spring@Scheduled注解及工作原理》Spring的@Scheduled注解用于标记定时任务,无需额外库,需配置@EnableScheduling,设置fixedRate、fixedDe... 目录1.@Scheduled注解定义2.配置 @Scheduled2.1 开启定时任务支持2.2 创建

Spring Boot 实现 IP 限流的原理、实践与利弊解析

《SpringBoot实现IP限流的原理、实践与利弊解析》在SpringBoot中实现IP限流是一种简单而有效的方式来保障系统的稳定性和可用性,本文给大家介绍SpringBoot实现IP限... 目录一、引言二、IP 限流原理2.1 令牌桶算法2.2 漏桶算法三、使用场景3.1 防止恶意攻击3.2 控制资源

Python中使用uv创建环境及原理举例详解

《Python中使用uv创建环境及原理举例详解》uv是Astral团队开发的高性能Python工具,整合包管理、虚拟环境、Python版本控制等功能,:本文主要介绍Python中使用uv创建环境及... 目录一、uv工具简介核心特点:二、安装uv1. 通过pip安装2. 通过脚本安装验证安装:配置镜像源(可

Mysql的主从同步/复制的原理分析

《Mysql的主从同步/复制的原理分析》:本文主要介绍Mysql的主从同步/复制的原理分析,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录为什么要主从同步?mysql主从同步架构有哪些?Mysql主从复制的原理/整体流程级联复制架构为什么好?Mysql主从复制注意

Nacos注册中心和配置中心的底层原理全面解读

《Nacos注册中心和配置中心的底层原理全面解读》:本文主要介绍Nacos注册中心和配置中心的底层原理的全面解读,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录临时实例和永久实例为什么 Nacos 要将服务实例分为临时实例和永久实例?1.x 版本和2.x版本的区别

apache的commons-pool2原理与使用实践记录

《apache的commons-pool2原理与使用实践记录》ApacheCommonsPool2是一个高效的对象池化框架,通过复用昂贵资源(如数据库连接、线程、网络连接)优化系统性能,这篇文章主... 目录一、核心原理与组件二、使用步骤详解(以数据库连接池为例)三、高级配置与优化四、典型应用场景五、注意事