设计并实现计时长度为60秒的秒表(课程设计)

2024-01-07 02:10

本文主要是介绍设计并实现计时长度为60秒的秒表(课程设计),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

设计并实现计时长度为60秒的秒表,计时单位为百分秒。

一、logisim:

1.分频器的实现:

​ 设定输入时钟信号为4.1KHz,设计分频器,产生百分秒输出时钟信号;

​ 首先看分频器在整个电路中的作用,秒表计时低位从百分秒开始计,因此需要百分秒周期的信号输入,既100Hz的时钟信号,要将logisim输入的4.1KHz分频为100Hz,可知需要设置分频系数为1/41的分频器,对原频率进行41分频。

​ 分频器由计数器组成,首先需要设计带有进位功能的模41计数器:

在这里插入图片描述

​ 如图为logisim中设计的模41计数器,采用两片封装的74161进行级联,低位片采用置数法构成模10计数器,每计10个数通过与非门向高位片产生CP信号,使高位片计1。当高位片计到4低位片计到1时通过与非门产生低电位作用于CR非进行整体清零,并同时产生一个向高位的进位信号。由此构成了从0计到40的模41计数器。

在这里插入图片描述

​ 以4分频为例,原输入频率通过m4计数器产生的进位信号波形如图所示,要进位4分频,必须在每个进位信号时使得输出信号反转,如图CLK_OUT波形所示。

在这里插入图片描述

​ 然后需要设计两个计数相同的计数器,一个由上升沿驱动,一个由下降沿驱动,将输出信号进行或运算,既可以得到50%占空比的奇数分频器。设计的电路如下图所示:

在这里插入图片描述

​ 将前面设计的模41计数器进行封装,将它的进位输出连接到JK触发器的CP端,JK触发器的JK端同时接高电平,这样就实现了每当计数器计满输出进位信号使得JK触发器的输出进行翻转。

在这里插入图片描述

​ 上下两个M41计数器,本身为上升沿触发方式,给下面的计数器输入端添加了非门构成了下降沿触发的计数器。最后将上下两个输出信号通过或门,构成了输出信号为50%占空比的奇数分频器。 最后将logisim中分频器进行封装,如上边右图所示。

2.M100计数器的实现:

​ 设计模100的BCD码计数器,以百分秒时钟为输入,产生秒信号(1Hz)输出;

​ 首先在logisim中设计74161计数器。将74161封装,加载到主电路中进行级联:

在这里插入图片描述

​ 设计的带有进位功能的M100 BCD码计数器如图所示,两个74161进行级联,低位片使用反馈置数法构成模10计数器,低位片每计数10次向高位片发送CP信号,使高位片计1,当低位片记到9产生进位使高位片正好为10时通过3输入与非门产生了低电位的清零信号,作用于两片74161的CR非,使整体清零,同时通过非门产生了一个进位信号,构成了带走进位功能的M100 BCD码计数器。

3.M60计数器的实现:

​ 设计模60的BCD码计数器,进行60秒计数;

在这里插入图片描述

​ 设计的M60计数器如图所示,使用了前面封装的74161计数器,低位片采用置数法,计数到9时置数为0,同时通过与非门向高位产生CP信号使高位片计1,当低位片计数到9进位使高位片正好为6时通过3输入与非门产生了低电平清零信号,作用于两片76161的CR非,使计数清零,再开始下一轮计数,构成了M60的BCD码计数器。

4.七段共阴驱动的实现:

使用logisim的真值表功能构建电路如图:

在这里插入图片描述

封装后连接七段数码管测试:

在这里插入图片描述

5.所有模块完成之后,进行总装:

​ 4.1KHz时钟信号输入通过41分频器进行分频,输出100Hz时钟信号到M100计数器,M100计数器计数满后向M60计数器进位。M100BCD码计数器通过两片七段共阴驱动连接两片七段数码管,表示百分秒计时。M60BCD码计数器通过两片七段共阴驱动连接两片七段数码管,表示秒钟计时。

​ 最后点击logisim菜单栏的模拟—>时钟频率设为4.1KHZ—>启用时钟模拟,秒表就跑起来了:

在这里插入图片描述

​ logisim使用了41分频的分频器,但实际测试中发现计时速度很慢,没有达到正常秒表的计时速度,分析原因为logisim软件自身产生的输入频率不对,远远没有达到4.1KHz,本质上可能是与电脑自身产生的时钟频率有关。采用的解决方案为,从41开始不断降低分频数,当降到6分频时,秒表工作速度接近正常。

二、quartus:

1.分频器的实现:

​ 选择50MHz的时钟频率作为输入,秒表需要的时钟频率为100Hz,因此需要进行500000分频。首先,通过verilog代码完成quartus下的N分频的分频器:

module experiment4 //N分频器(fre_div)(input clk,input rst_p,output reg clk_out);// 参数 :位宽和分频系数
parameter width = 4;
parameter N = 5;
reg [width-1:0] cnt;// count edge
always @(posedge clk or posedge rst_p) 
beginif(rst_p)begincnt<=0;clk_out<=1'b0;end
else if(cnt==N-1)
beginclk_out<=~clk_out;cnt<=0;
end
else   cnt<=cnt+1;
end
endmodule

​ 代码如图所示,通过parameter设置了参数N,可以通过修改N的值来改变分频器的分频系数,将文件封装成子电路加入到电路图中:

在这里插入图片描述

​ 由于500000分频数字非常庞大,因此我采用了多个分频器级联的方法。如上图所示,第一个分频器分频系数为1/5,后面连接的五个分频器分频系数为1/10,通过这样的级联构成了分频系数为1/500000的分频器。

​ 最后将分频器封装成子电路:

在这里插入图片描述

2.M100计数器的实现:

在这里插入图片描述

仿真:

在这里插入图片描述

在这里插入图片描述

​ 从波形图可以观察到,低位每一个周期相当于高位的半个周期,从qout0到qout7都满足这一情况,当计数器从0计数到99时,再来一个CP信号,计数器清零,开始下一轮的计数,计数器工作正常。

3.M60计数器的实现:

在这里插入图片描述

4.七段共阴驱动的实现:
module cy4(input LE,BL,LT,//输入端口声明input D3,D2,D1,D0,//输入端口声明output reg a,b,c,d,e,f,g//输出端口及变量的数据类型声明);
always @(*)
beginif(LT == 1) {a,b,c,d,e,f,g} = 7'b111_1111;//让显示器的7段都发光,显示8else if(BL == 1) {a,b,c,d,e,f,g} = 7'b000_0000;//让显示器的7段都熄灭,显示0else if(LE == 1) {a,b,c,d,e,f,g} = {a,b,c,d,e,f,g};//锁存显示elsecase({D3,D2,D1,D0})//根据输入的8421BCD码,实现显示译码器的功能4'd0: {a,b,c,d,e,f,g} <= 7'b111_1110;4'd1: {a,b,c,d,e,f,g} <= 7'b011_0000;4'd2: {a,b,c,d,e,f,g} <= 7'b110_1101;4'd3: {a,b,c,d,e,f,g} <= 7'b111_1001;4'd4: {a,b,c,d,e,f,g} <= 7'b011_0011;4'd5: {a,b,c,d,e,f,g} <= 7'b101_1011;4'd6: {a,b,c,d,e,f,g} <= 7'b001_1111;4'd7: {a,b,c,d,e,f,g} <= 7'b111_0000;4'd8: {a,b,c,d,e,f,g} <= 7'b111_1111;4'd9: {a,b,c,d,e,f,g} <= 7'b111_1011;default: {a,b,c,d,e,f,g} <= 7'b000_0000;//非8421BCD码输入时,不显示endcase
end
endmodule

电路封装:

在这里插入图片描述

5.所有模块完成之后,进行总装:

在这里插入图片描述

quartus仿真:

在这里插入图片描述

​ 结合数码管构造来看,当第三个数码管的abcdef为011000就表示计时到一秒钟,观察和第三个数码管连接的s1s2s3s4s5s6s7的波形。

在这里插入图片描述

在这里插入图片描述

​ 如上图所示,0.1纳秒的CP输入,当仿真波形到10纳秒时正有第三个数码管s1s2s3s4s5s6s7=0110000,表示数字1,既计时到1秒。其他三个数码管道理相同,电路工作非常完美。

三、扩展:

计数与分频有什么区别?

​ 分频器的时钟脉冲CP一定是周期信号,则输出信号也是周期性,输出信号的周期是输入信号周期的M倍,反过来输出信号的频率是输入信号频率的M分之一。分频器的目的是通过分频产生需要的频率信号来给电路使用。

​ 计数器的时钟脉冲CP不一定是周期信号,可以是随机脉冲,称为计数脉冲,则输出信号也不一定是周期性。计数器工作目的是纪录计数脉冲个数(递加或递减)以及产生溢出(进位或借位)信号。

这篇关于设计并实现计时长度为60秒的秒表(课程设计)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/578386

相关文章

Oracle查询优化之高效实现仅查询前10条记录的方法与实践

《Oracle查询优化之高效实现仅查询前10条记录的方法与实践》:本文主要介绍Oracle查询优化之高效实现仅查询前10条记录的相关资料,包括使用ROWNUM、ROW_NUMBER()函数、FET... 目录1. 使用 ROWNUM 查询2. 使用 ROW_NUMBER() 函数3. 使用 FETCH FI

Python脚本实现自动删除C盘临时文件夹

《Python脚本实现自动删除C盘临时文件夹》在日常使用电脑的过程中,临时文件夹往往会积累大量的无用数据,占用宝贵的磁盘空间,下面我们就来看看Python如何通过脚本实现自动删除C盘临时文件夹吧... 目录一、准备工作二、python脚本编写三、脚本解析四、运行脚本五、案例演示六、注意事项七、总结在日常使用

Java实现Excel与HTML互转

《Java实现Excel与HTML互转》Excel是一种电子表格格式,而HTM则是一种用于创建网页的标记语言,虽然两者在用途上存在差异,但有时我们需要将数据从一种格式转换为另一种格式,下面我们就来看看... Excel是一种电子表格格式,广泛用于数据处理和分析,而HTM则是一种用于创建网页的标记语言。虽然两

Java中Springboot集成Kafka实现消息发送和接收功能

《Java中Springboot集成Kafka实现消息发送和接收功能》Kafka是一个高吞吐量的分布式发布-订阅消息系统,主要用于处理大规模数据流,它由生产者、消费者、主题、分区和代理等组件构成,Ka... 目录一、Kafka 简介二、Kafka 功能三、POM依赖四、配置文件五、生产者六、消费者一、Kaf

使用Python实现在Word中添加或删除超链接

《使用Python实现在Word中添加或删除超链接》在Word文档中,超链接是一种将文本或图像连接到其他文档、网页或同一文档中不同部分的功能,本文将为大家介绍一下Python如何实现在Word中添加或... 在Word文档中,超链接是一种将文本或图像连接到其他文档、网页或同一文档中不同部分的功能。通过添加超

windos server2022里的DFS配置的实现

《windosserver2022里的DFS配置的实现》DFS是WindowsServer操作系统提供的一种功能,用于在多台服务器上集中管理共享文件夹和文件的分布式存储解决方案,本文就来介绍一下wi... 目录什么是DFS?优势:应用场景:DFS配置步骤什么是DFS?DFS指的是分布式文件系统(Distr

NFS实现多服务器文件的共享的方法步骤

《NFS实现多服务器文件的共享的方法步骤》NFS允许网络中的计算机之间共享资源,客户端可以透明地读写远端NFS服务器上的文件,本文就来介绍一下NFS实现多服务器文件的共享的方法步骤,感兴趣的可以了解一... 目录一、简介二、部署1、准备1、服务端和客户端:安装nfs-utils2、服务端:创建共享目录3、服

C#使用yield关键字实现提升迭代性能与效率

《C#使用yield关键字实现提升迭代性能与效率》yield关键字在C#中简化了数据迭代的方式,实现了按需生成数据,自动维护迭代状态,本文主要来聊聊如何使用yield关键字实现提升迭代性能与效率,感兴... 目录前言传统迭代和yield迭代方式对比yield延迟加载按需获取数据yield break显式示迭

Python实现高效地读写大型文件

《Python实现高效地读写大型文件》Python如何读写的是大型文件,有没有什么方法来提高效率呢,这篇文章就来和大家聊聊如何在Python中高效地读写大型文件,需要的可以了解下... 目录一、逐行读取大型文件二、分块读取大型文件三、使用 mmap 模块进行内存映射文件操作(适用于大文件)四、使用 pand

python实现pdf转word和excel的示例代码

《python实现pdf转word和excel的示例代码》本文主要介绍了python实现pdf转word和excel的示例代码,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价... 目录一、引言二、python编程1,PDF转Word2,PDF转Excel三、前端页面效果展示总结一