内核线程创建-kthread_create

2024-01-07 01:36

本文主要是介绍内核线程创建-kthread_create,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

  文章参考Linux内核线程kernel thread详解 - 知乎

大概意思就是早期创建内核线程,是交由内核处理,由内核自己完成(感觉好像也不太对呢),创建一个内核线程比较麻烦,会导致内核阻塞。因此就诞生了工作队列以及现在的kthreadd 2号进程。这样我们在创建内核线程时,只需要将消息告诉它们,实际进行内核线程创建的任务有kthreadd完成,感觉类似一个下半部。

我环境使用的是kthreadd进行内核线程的创建

内核线程创建kthread_create

kthread_create-->kthread_create_on_node-->__kthread_create_on_node

#define kthread_create(threadfn, data, namefmt, arg...) \kthread_create_on_node(threadfn, data, NUMA_NO_NODE, namefmt, ##arg)

 可以看到这里只是将创建内核线程的任务加入了链表里面,然后唤醒kthreadd进行内核线程的创建

struct task_struct *__kthread_create_on_node(int (*threadfn)(void *data),void *data, int node,const char namefmt[],va_list args)
{DECLARE_COMPLETION_ONSTACK(done);struct task_struct *task;struct kthread_create_info *create = kmalloc(sizeof(*create),GFP_KERNEL);if (!create)return ERR_PTR(-ENOMEM);/* 被创建的内核线程的信息被存放到了create_info里面 */create->threadfn = threadfn;create->data = data;create->node = node;create->done = &done;spin_lock(&kthread_create_lock);/* 将create_info加入到链表中,然后唤醒kthreadd_task(2号进程)进行后续的内核线程创建 */list_add_tail(&create->list, &kthread_create_list);spin_unlock(&kthread_create_lock);wake_up_process(kthreadd_task);/** Wait for completion in killable state, for I might be chosen by* the OOM killer while kthreadd is trying to allocate memory for* new kernel thread.*//* 这里是等待内核线程创建完成,内核线程创建完成后会释放这样完成量函数kthread里面会释放这个completion*/if (unlikely(wait_for_completion_killable(&done))) {/** If I was SIGKILLed before kthreadd (or new kernel thread)* calls complete(), leave the cleanup of this structure to* that thread.*/if (xchg(&create->done, NULL))return ERR_PTR(-EINTR);/** kthreadd (or new kernel thread) will call complete()* shortly.*/wait_for_completion(&done);}/* 函数kthread里面会将result赋值为创建好的内核线程的task_struct */task = create->result;if (!IS_ERR(task)) {static const struct sched_param param = { .sched_priority = 0 };char name[TASK_COMM_LEN];/** task is already visible to other tasks, so updating* COMM must be protected.*/vsnprintf(name, sizeof(name), namefmt, args);set_task_comm(task, name);//这里设置内核线程的名字/** root may have changed our (kthreadd's) priority or CPU mask.* The kernel thread should not inherit these properties.*/sched_setscheduler_nocheck(task, SCHED_NORMAL, &param);set_cpus_allowed_ptr(task, cpu_all_mask);}kfree(create);return task;
}

那2号进程kthreadd干了什么事情呢?

2号进程在rest_init里面创建,其处理函数为kthreadd

noinline void __ref rest_init(void)
{...............................pid = kernel_thread(kthreadd, NULL, CLONE_FS | CLONE_FILES);rcu_read_lock();kthreadd_task = find_task_by_pid_ns(pid, &init_pid_ns);rcu_read_unlock();
............................
}

kthreadd-->create_kthread-->kernel_thread 

int kthreadd(void *unused)
{struct task_struct *tsk = current;/* Setup a clean context for our children to inherit. */set_task_comm(tsk, "kthreadd");ignore_signals(tsk);set_cpus_allowed_ptr(tsk, cpu_all_mask);set_mems_allowed(node_states[N_MEMORY]);current->flags |= PF_NOFREEZE;cgroup_init_kthreadd();/*其实就是一直检查kthread_create_list是否为空如果不为空,将不断的处理链表里面的任务处理,创建内核线程*/for (;;) {set_current_state(TASK_INTERRUPTIBLE);if (list_empty(&kthread_create_list))schedule();__set_current_state(TASK_RUNNING);spin_lock(&kthread_create_lock);while (!list_empty(&kthread_create_list)) {struct kthread_create_info *create;create = list_entry(kthread_create_list.next,struct kthread_create_info, list);list_del_init(&create->list);spin_unlock(&kthread_create_lock);create_kthread(create);spin_lock(&kthread_create_lock);}spin_unlock(&kthread_create_lock);}return 0;
}

可以看到 内核线程的创建最终还是调用的kernel_thread。创建的内核线程会执行kthread,在函数kthread里面执行了我们设置的内核线程处理函数threadfun

static void create_kthread(struct kthread_create_info *create)
{int pid;#ifdef CONFIG_NUMAcurrent->pref_node_fork = create->node;
#endif/* We want our own signal handler (we take no signals by default). *//* 最终在kthread里面调用到我们设置的回调函数 */pid = kernel_thread(kthread, create, CLONE_FS | CLONE_FILES | SIGCHLD);if (pid < 0) {/* If user was SIGKILLed, I release the structure. */struct completion *done = xchg(&create->done, NULL);if (!done) {kfree(create);return;}create->result = ERR_PTR(pid);complete(done);}
}

kthread运行线程处理函数 

执行到这里,就算内核线程创建成功了.只不过它不会立即执行我们的threadfn(即创建内核线程时指定的函数),它会先释放completion,并让出cpu。这就是kthread_create后还需要wake_up_process的原因。

static int kthread(void *_create)
{/* Copy data: it's on kthread's stack */struct kthread_create_info *create = _create;int (*threadfn)(void *data) = create->threadfn;void *data = create->data;struct completion *done;struct kthread *self;int ret;self = kzalloc(sizeof(*self), GFP_KERNEL);set_kthread_struct(self);/* If user was SIGKILLed, I release the structure. *//* 将create->done赋值为NULL,并返回create->done原来的值 */done = xchg(&create->done, NULL);if (!done) {kfree(create);do_exit(-EINTR);}if (!self) {create->result = ERR_PTR(-ENOMEM);complete(done);do_exit(-ENOMEM);}self->data = data;init_completion(&self->exited);init_completion(&self->parked);/* 此时的current就已经是我们创建好的内核线程了 */current->vfork_done = &self->exited;/* OK, tell user we're spawned, wait for stop or wakeup */__set_current_state(TASK_UNINTERRUPTIBLE);//__kthread_create_on_node里面将result当做返回值的原因在这里体现create->result = current;/* 在这里释放的completion,__kthread_create_on_node才会继续往下走 */complete(done);/*可以看到内核线程创建完了会先让出cpu,并不会立即执行我们的线程处理函数这就是我们为什么需要wake_up_process的原因,需要wake之后,才会继续从这里执行然后走到我们的threadfn*/schedule();ret = -EINTR;/*这个检查,我怀疑就是导致kthread_stop表现出不同行为的原因*/if (!test_bit(KTHREAD_SHOULD_STOP, &self->flags)) {cgroup_kthread_ready();__kthread_parkme(self);/* 执行内核线程设置的处理函数 */ret = threadfn(data);}/* 可以看到如果threadfn执行完了,内核线程退出是do_exit */do_exit(ret);
}

经过实际验证确实是kthread调用了complete(done);,kthread_create才能返回,否则__kthread_create_on_node会一直等待completion

测试代码如下

起了个定时器,定时器里面唤醒了一个内核线程.内核线程里面做了两个事情,一个是将comp_block设置为true,即跳过complete(done),另外一个是创建一个内核线程,看看是否会阻塞

struct task_struct *task;
struct timer_list timer;
/* 通过该变量控制是否是否completion */
extern bool comp_block;int kill_thread(void* a)
{/* 不释放completion,然后再看看kthread_create是否会阻塞 */comp_block = true;printk(KERN_EMERG "\r\n before create thread\n");kthread_create(test_thread, NULL, "test_task");printk(KERN_EMERG "\r\n after create thread\n");return;
}
void timer_work(unsigned long data)
{wake_up_process(task);return;
}static int smsc911x_init(struct net_device *dev)
{
...............................printk(KERN_EMERG "\r\n softlockup simulate, in_interrupt %u in_softirq %u, NR_CPUS %d\n", in_interrupt(), in_softirq(), NR_CPUS);timer.expires=jiffies+msecs_to_jiffies(20000);timer.function=timer_work;init_timer(&timer);add_timer(&timer);printk(KERN_EMERG "\r\n create thread\n");	task = kthread_create(kill_thread, NULL, "kill_task");printk(KERN_EMERG "\r\n create thread end\n");
....................................
}
bool comp_block = false;
static int kthread(void *_create)
{
.............................../* OK, tell user we're spawned, wait for stop or wakeup */__set_current_state(TASK_UNINTERRUPTIBLE);create->result = current;if (false == comp_block){complete(done);}schedule();
..........................................
}

效果展示 :可以看到并未打印kthread_create后面的log,并且内核线程kill_task也是一直无法退出

 

 如果定时器里面不设置comp_block的值,即正常释放completion,log如下

内核线程退出kthread_stop

kthread_stop:只是告诉内核线程应该退出了,但是要不要退出,还需要看内核线程处理函数是否检查该消息,并且检查到以后还必须主动退出。

1、设置内核线程为KTHREAD_SHOULD_STOP,当内核线程的处理函数用kthread_should_stop检查标记时,能感知到该事件(如果内核线程一直不检查,那么即使调用了kthread_stop也是没有用的)

2、重新唤醒内核线程,如何内核线程没有运行,那么也是无法感知到这个事件的

3、等待completion释放

int kthread_stop(struct task_struct *k)
{struct kthread *kthread;int ret;trace_sched_kthread_stop(k);get_task_struct(k);kthread = to_kthread(k);set_bit(KTHREAD_SHOULD_STOP, &kthread->flags);kthread_unpark(k);wake_up_process(k);wait_for_completion(&kthread->exited);ret = k->exit_code;put_task_struct(k);trace_sched_kthread_stop_ret(ret);return ret;
}

wait_for_completion(&kthread->exited); 

这个是在哪里释放的呢?

exited其实就是vfork_done,

static int kthread(void *_create)
{
........................................self->data = data;init_completion(&self->exited);init_completion(&self->parked);/* 此时的current就已经是我们创建好的内核线程了 */current->vfork_done = &self->exited;..............................do_exit(ret);
}

 那么vfork_done是在哪里释放的呢?

do_exit-->exit_mm-->exit_mm_release-->mm_release

static void mm_release(struct task_struct *tsk, struct mm_struct *mm)
{
.................................../** All done, finally we can wake up parent and return this mm to him.* Also kthread_stop() uses this completion for synchronization.*/if (tsk->vfork_done)complete_vfork_done(tsk);
}

这篇关于内核线程创建-kthread_create的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/578313

相关文章

Springboot的ThreadPoolTaskScheduler线程池轻松搞定15分钟不操作自动取消订单

《Springboot的ThreadPoolTaskScheduler线程池轻松搞定15分钟不操作自动取消订单》:本文主要介绍Springboot的ThreadPoolTaskScheduler线... 目录ThreadPoolTaskScheduler线程池实现15分钟不操作自动取消订单概要1,创建订单后

JAVA中整型数组、字符串数组、整型数和字符串 的创建与转换的方法

《JAVA中整型数组、字符串数组、整型数和字符串的创建与转换的方法》本文介绍了Java中字符串、字符数组和整型数组的创建方法,以及它们之间的转换方法,还详细讲解了字符串中的一些常用方法,如index... 目录一、字符串、字符数组和整型数组的创建1、字符串的创建方法1.1 通过引用字符数组来创建字符串1.2

Linux内核之内核裁剪详解

《Linux内核之内核裁剪详解》Linux内核裁剪是通过移除不必要的功能和模块,调整配置参数来优化内核,以满足特定需求,裁剪的方法包括使用配置选项、模块化设计和优化配置参数,图形裁剪工具如makeme... 目录简介一、 裁剪的原因二、裁剪的方法三、图形裁剪工具四、操作说明五、make menuconfig

C语言线程池的常见实现方式详解

《C语言线程池的常见实现方式详解》本文介绍了如何使用C语言实现一个基本的线程池,线程池的实现包括工作线程、任务队列、任务调度、线程池的初始化、任务添加、销毁等步骤,感兴趣的朋友跟随小编一起看看吧... 目录1. 线程池的基本结构2. 线程池的实现步骤3. 线程池的核心数据结构4. 线程池的详细实现4.1 初

手把手教你idea中创建一个javaweb(webapp)项目详细图文教程

《手把手教你idea中创建一个javaweb(webapp)项目详细图文教程》:本文主要介绍如何使用IntelliJIDEA创建一个Maven项目,并配置Tomcat服务器进行运行,过程包括创建... 1.启动idea2.创建项目模板点击项目-新建项目-选择maven,显示如下页面输入项目名称,选择

如何安装HWE内核? Ubuntu安装hwe内核解决硬件太新的问题

《如何安装HWE内核?Ubuntu安装hwe内核解决硬件太新的问题》今天的主角就是hwe内核(hardwareenablementkernel),一般安装的Ubuntu都是初始内核,不能很好地支... 对于追求系统稳定性,又想充分利用最新硬件特性的 Ubuntu 用户来说,HWEXBQgUbdlna(Har

Java子线程无法获取Attributes的解决方法(最新推荐)

《Java子线程无法获取Attributes的解决方法(最新推荐)》在Java多线程编程中,子线程无法直接获取主线程设置的Attributes是一个常见问题,本文探讨了这一问题的原因,并提供了两种解决... 目录一、问题原因二、解决方案1. 直接传递数据2. 使用ThreadLocal(适用于线程独立数据)

【Python编程】Linux创建虚拟环境并配置与notebook相连接

1.创建 使用 venv 创建虚拟环境。例如,在当前目录下创建一个名为 myenv 的虚拟环境: python3 -m venv myenv 2.激活 激活虚拟环境使其成为当前终端会话的活动环境。运行: source myenv/bin/activate 3.与notebook连接 在虚拟环境中,使用 pip 安装 Jupyter 和 ipykernel: pip instal

内核启动时减少log的方式

内核引导选项 内核引导选项大体上可以分为两类:一类与设备无关、另一类与设备有关。与设备有关的引导选项多如牛毛,需要你自己阅读内核中的相应驱动程序源码以获取其能够接受的引导选项。比如,如果你想知道可以向 AHA1542 SCSI 驱动程序传递哪些引导选项,那么就查看 drivers/scsi/aha1542.c 文件,一般在前面 100 行注释里就可以找到所接受的引导选项说明。大多数选项是通过"_