Qt使用多线程的一些心得——2.继承QObject的多线程使用方法

2024-01-07 00:38

本文主要是介绍Qt使用多线程的一些心得——2.继承QObject的多线程使用方法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

转自
https://blog.csdn.net/czyt1988/article/details/71194457

现在Qt官方并不是很推荐继承QThread来实现多线程方法,而是极力推崇继承QObject的方法来实现,当然用哪个方法实现要视情况而定,别弄错了就行,估计Qt如此推崇继承QObject的方法可能是QThread太容易用错的原因。

继承QThread实现多线程的方法点此

  1. 前言
    上一篇介绍了传统的多线程使用方法——继承QThread来实现多线程,这也是很多框架的做法(MFC),但Qt还有一种多线程的实现方法,比直接继承QThread更为灵活,就是直接继承QObject实现多线程。

QObject是Qt框架的基本类,但凡涉及到信号槽有关的类都是继承于QObject。QObject是一个功能异常强大的类,它提供了Qt关键技术信号和槽的支持以及事件系统的支持,同时它提供了线程操作的接口,也就是QObject是可以选择不同的线程里执行的。

QObject的线程转移函数是:void moveToThread(QThread * targetThread) ,通过此函数可以把一个顶层Object(就是没有父级)转移到一个新的线程里。

QThread非常容易被新手误用,主要是QThread自身并不生存在它run函数所在的线程,而是生存在旧的线程中,此问题在上一篇重点描述了。由于QThread的这个特性,导致在调用QThread的非run函数容易在旧线程中执行,因此人们发现了一个新的魔改QThread的方法:
人们发现,咦,QThread也继承QObject,QObject有个函数void moveToThread(QThread * targetThread)可以把Object的运行线程转移,那么:(下面是非常不推荐的魔改做法,别用此方法):

class MyThread : public QThread{
public:
MyThread ()
{
moveToThread(this);
}
……
};
直接把MyThread整个转移到MyThread的新线程中,MyThread不仅run,其它函数也在新线程里了。这样的确可以运行正常,但这并不是QThread设计的初衷,Qt还专门发过一篇文章来吐槽这个做法。

在Qt4.8之后,Qt多线程的写法最好还是通过QObject来实现,和线程的交互通过信号和槽(实际上其实是通过事件)联系。

2.继承QObject的多线程实现
用QObject来实现多线程有个非常好的优点,就是默认就支持事件循环(Qt的许多非GUI类也需要事件循环支持,如QTimer、QTcpSocket),QThread要支持事件循环需要在QThread::run()中调用QThread::exec()来提供对消息循环的支持,否则那些需要事件循环支持的类都不能正常发送信号,因此如果要使用信号和槽,那就直接使用QObject来实现多线程。

2.1 创建及销毁线程
继承QObject多线程的方法线程的创建很简单,只要让QThread的start函数运行起来就行,但是需要注意销毁线程的方法
在线程创建之后,这个QObject的销毁不应该在主线程里进行,而是通过deleteLater槽进行安全的销毁,因此,继承QObject多线程的方法在创建时有几个槽函数需要特别关注:

一个是QThread的finished信号对接QObject的deleteLater使得线程结束后,继承QObject的那个多线程类会自己销毁
另一个是QThread的finished信号对接QThread自己的deleteLater,这个不是必须,下面官方例子就没这样做
看看Qt官方文档的例子:

class Worker : public QObject
{
Q_OBJECT
public slots:
void doWork(const QString &parameter) {
QString result;
/* … here is the expensive or blocking operation … */
emit resultReady(result);
}
signals:
void resultReady(const QString &result);
};
class Controller : public QObject
{
Q_OBJECT
QThread workerThread;
public:
Controller() {
Worker *worker = new Worker;
worker->moveToThread(&workerThread);
connect(&workerThread, &QThread::finished, worker, &QObject::deleteLater);
connect(this, &Controller::operate, worker, &Worker::doWork);
connect(worker, &Worker::resultReady, this, &Controller::handleResults);
workerThread.start();
}
~Controller() {
workerThread.quit();
workerThread.wait();
}
public slots:
void handleResults(const QString &);
signals:
void operate(const QString &);
};
使用QObject创建多线程的方法如下:

写一个继承QObject的类,对需要进行复杂耗时逻辑的入口函数声明为槽函数
此类在旧线程new出来,不能给它设置任何父对象
同时声明一个QThread对象,在官方例子里,QThread并没有new出来,这样在析构时就需要调用QThread::wait(),如果是堆分配的话, 可以通过deleteLater来让线程自杀
把obj通过moveToThread方法转移到新线程中,此时object已经是在线程中了
把线程的finished信号和object的deleteLater槽连接,这个信号槽必须连接,否则会内存泄漏
正常连接其他信号和槽(在连接信号槽之前调用moveToThread,不需要处理connect的第五个参数,否则就显示声明用Qt::QueuedConnection来连接)
初始化完后调用’QThread::start()’来启动线程
在逻辑结束后,调用QThread::quit退出线程的事件循环
使用QObject来实现多线程比用继承QThread的方法更加灵活,整个类都是在新的线程中,通过信号槽和主线程传递数据,前篇文章的例子用继承QObject的方法实现的话,代码如下:
头文件(ThreadObject.h):

include

include

class ThreadObject : public QObject
{
Q_OBJECT
public:
ThreadObject(QObject* parent = NULL);
~ThreadObject();
void setRunCount(int count);
void stop();
signals:
void message(const QString& info);
void progress(int present);
public slots:
void runSomeBigWork1();
void runSomeBigWork2();
private:
int m_runCount;
int m_runCount2;
bool m_isStop;
QMutex m_stopMutex;
};
cpp文件(ThreadObject.cpp):

include “ThreadObject.h”

include

include

include

include

include

ThreadObject::ThreadObject(QObject *parent):QObject(parent)
,m_runCount(10)
,m_runCount2(std::numeric_limits::max())
,m_isStop(true)
{
}
ThreadObject::~ThreadObject()
{
qDebug() << “ThreadObject destroy”;
emit message(QString(“Destroy %1->%2,thread id:%3”).arg(FUNCTION).arg(FILE).arg((int)QThread::currentThreadId()));
}
void ThreadObject::setRunCount(int count)
{
m_runCount = count;
emit message(QString(“%1->%2,thread id:%3”).arg(FUNCTION).arg(FILE).arg((int)QThread::currentThreadId()));
}
void ThreadObject::runSomeBigWork1()
{
{
QMutexLocker locker(&m_stopMutex);
m_isStop = false;
}
int count = 0;
QString str = QString(“%1->%2,thread id:%3”).arg(FILE).arg(FUNCTION).arg((int)QThread::currentThreadId());
emit message(str);
int process = 0;
while(1)
{
{
QMutexLocker locker(&m_stopMutex);
if(m_isStop)
return;
}
if(m_runCount == count)
{
break;
}
sleep(1);
int pro = ((float)count / m_runCount) * 100;
if(pro != process)
{
process = pro;
emit progress(((float)count / m_runCount) * 100);
emit message(QString(“Object::run times:%1,m_runCount:%2”).arg(count).arg(m_runCount2));
}
++count;
}
}
void ThreadObject::runSomeBigWork2()
{
{
QMutexLocker locker(&m_stopMutex);
m_isStop = false;
}
int count = 0;
QString str = QString(“%1->%2,thread id:%3”).arg(FILE).arg(FUNCTION).arg((int)QThread::currentThreadId());
emit message(str);
int process = 0;
QElapsedTimer timer;
timer.start();
while(1)
{
{
QMutexLocker locker(&m_stopMutex);
if(m_isStop)
return;
}
if(m_runCount2 == count)
{
break;
}
int pro = ((float)count / m_runCount2) * 100;
if(pro != process)
{
process = pro;
emit progress(pro);
emit message(QString(“%1,%2,%3,%4”)
.arg(count)
.arg(m_runCount2)
.arg(pro)
.arg(timer.elapsed()));
timer.restart();
}
++count;
}
}
void ThreadObject::stop()
{
QMutexLocker locker(&m_stopMutex);
emit message(QString(“%1->%2,thread id:%3”).arg(FUNCTION).arg(FILE).arg((int)QThread::currentThreadId()));
m_isStop = true;
}
这个Object有两个耗时函数work1和work2,这两个耗时函数的调用都是通过槽函数触发,同时为了能及时打断线程,添加了一个stop函数,stop函数不是通过信号槽触发,因此需要对数据进行保护,这里用了互斥锁对一个bool变量进行了保护处理,当然会失去一些性能。

主界面的头文件(截取部分代码):

include

include

class ThreadFromQThread;
class ThreadObject;
namespace Ui {
class Widget;
}
class Widget : public QWidget
{
Q_OBJECT
public:
explicit Widget(QWidget *parent = 0);
~Widget();
signals:
void startObjThreadWork1();
void startObjThreadWork2();
private slots:
……
void onButtonObjectMove2ThreadClicked();
void onButtonObjectMove2Thread2Clicked();
void onButtonObjectQuitClicked();
void onButtonObjectThreadStopClicked();
void progress(int val);
void receiveMessage(const QString& str);
void heartTimeOut();
private:
void startObjThread();
private:
Ui::Widget *ui;
……
ThreadObject* m_obj;
QThread* m_objThread;
};
cpp文件

Widget::~Widget()
{
qDebug() << “start destroy widget”;
if(m_objThread)
{
m_objThread->quit();
}
m_objThread->wait();
qDebug() << “end destroy widget”;
}
//创建线程
void Widget::startObjThread()
{
if(m_objThread)
{
return;
}
m_objThread= new QThread();
m_obj = new ThreadObject();
m_obj->moveToThread(m_objThread);
connect(m_objThread,&QThread::finished,m_objThread,&QObject::deleteLater);
connect(m_objThread,&QThread::finished,m_obj,&QObject::deleteLater);
connect(this,&Widget::startObjThreadWork1,m_obj,&ThreadObject::runSomeBigWork1);
connect(this,&Widget::startObjThreadWork2,m_obj,&ThreadObject::runSomeBigWork2);
connect(m_obj,&ThreadObject::progress,this,&Widget::progress);
connect(m_obj,&ThreadObject::message,this,&Widget::receiveMessage);
m_objThread->start();
}
//调用线程的runSomeBigWork1
void Widget::onButtonObjectMove2ThreadClicked()
{
if(!m_objThread)
{
startObjThread();
}
emit startObjThreadWork1();//主线程通过信号换起子线程的槽函数
ui->textBrowser->append(“start Obj Thread work 1”);
}
//调用线程的runSomeBigWork2
void Widget::onButtonObjectMove2Thread2Clicked()
{
if(!m_objThread)
{
startObjThread();
}
emit startObjThreadWork2();//主线程通过信号换起子线程的槽函数
ui->textBrowser->append(“start Obj Thread work 2”);
}
//调用线程的中断
void Widget::onButtonObjectThreadStopClicked()
{
if(m_objThread)
{
if(m_obj)
{
m_obj->stop();
}
}
}
创建线程和官方例子差不多,区别是QThread也是用堆分配,这样,让QThread自杀的槽就一定记得加上,否则QThread就逍遥法外了。

connect(m_objThread,&QThread::finished,m_objThread,&QObject::deleteLater);
3.加锁对性能的影响
上例的runSomeBigWork2中,让一个int不停自加1,一直加到int的最大值,为了验证加锁和不加锁的影响,这里对加锁和不加锁运行了两次观察耗时的变化

void ThreadObject::runSomeBigWork2()
{
{
QMutexLocker locker(&m_stopMutex);
m_isStop = false;
}
int count = 0;
QString str = QString(“%1->%2,thread id:%3”).arg(FILE).arg(FUNCTION).arg((int)QThread::currentThreadId());
emit message(str);
int process = 0;
QElapsedTimer timer;
timer.start();
while(1)
{
{
QMutexLocker locker(&m_stopMutex);
if(m_isStop)
return;
}
if(m_runCount2 == count)
{
break;
}
int pro = ((float)count / m_runCount2) * 100;
if(pro != process)
{
process = pro;
emit progress(pro);
emit message(QString(“%1,%2,%3,%4”)
.arg(count)
.arg(m_runCount2)
.arg(pro)
.arg(timer.elapsed()));
timer.restart();
}
++count;
}
}
结果如下:

这里没个横坐标的每%1进行了21474837次循环,由统计图可见,Debug模式下使用了锁后性能下降4倍,Release模式下下降1.5倍的样子

3.总结

如果线程要用到消息循环,使用继承QObject的多线程方法更简单
继承QObject的多线程不能指定父对象
把所有耗时操作都作为槽函数
QMutex会带来一定的耗时,大概速度会降低1.5倍(Release模式)
–> 见 github

这篇关于Qt使用多线程的一些心得——2.继承QObject的多线程使用方法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/578165

相关文章

python使用fastapi实现多语言国际化的操作指南

《python使用fastapi实现多语言国际化的操作指南》本文介绍了使用Python和FastAPI实现多语言国际化的操作指南,包括多语言架构技术栈、翻译管理、前端本地化、语言切换机制以及常见陷阱和... 目录多语言国际化实现指南项目多语言架构技术栈目录结构翻译工作流1. 翻译数据存储2. 翻译生成脚本

C++初始化数组的几种常见方法(简单易懂)

《C++初始化数组的几种常见方法(简单易懂)》本文介绍了C++中数组的初始化方法,包括一维数组和二维数组的初始化,以及用new动态初始化数组,在C++11及以上版本中,还提供了使用std::array... 目录1、初始化一维数组1.1、使用列表初始化(推荐方式)1.2、初始化部分列表1.3、使用std::

C++ Primer 多维数组的使用

《C++Primer多维数组的使用》本文主要介绍了多维数组在C++语言中的定义、初始化、下标引用以及使用范围for语句处理多维数组的方法,具有一定的参考价值,感兴趣的可以了解一下... 目录多维数组多维数组的初始化多维数组的下标引用使用范围for语句处理多维数组指针和多维数组多维数组严格来说,C++语言没

在 Spring Boot 中使用 @Autowired和 @Bean注解的示例详解

《在SpringBoot中使用@Autowired和@Bean注解的示例详解》本文通过一个示例演示了如何在SpringBoot中使用@Autowired和@Bean注解进行依赖注入和Bean... 目录在 Spring Boot 中使用 @Autowired 和 @Bean 注解示例背景1. 定义 Stud

使用 sql-research-assistant进行 SQL 数据库研究的实战指南(代码实现演示)

《使用sql-research-assistant进行SQL数据库研究的实战指南(代码实现演示)》本文介绍了sql-research-assistant工具,该工具基于LangChain框架,集... 目录技术背景介绍核心原理解析代码实现演示安装和配置项目集成LangSmith 配置(可选)启动服务应用场景

使用Python快速实现链接转word文档

《使用Python快速实现链接转word文档》这篇文章主要为大家详细介绍了如何使用Python快速实现链接转word文档功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 演示代码展示from newspaper import Articlefrom docx import

oracle DBMS_SQL.PARSE的使用方法和示例

《oracleDBMS_SQL.PARSE的使用方法和示例》DBMS_SQL是Oracle数据库中的一个强大包,用于动态构建和执行SQL语句,DBMS_SQL.PARSE过程解析SQL语句或PL/S... 目录语法示例注意事项DBMS_SQL 是 oracle 数据库中的一个强大包,它允许动态地构建和执行

Ubuntu固定虚拟机ip地址的方法教程

《Ubuntu固定虚拟机ip地址的方法教程》本文详细介绍了如何在Ubuntu虚拟机中固定IP地址,包括检查和编辑`/etc/apt/sources.list`文件、更新网络配置文件以及使用Networ... 1、由于虚拟机网络是桥接,所以ip地址会不停地变化,接下来我们就讲述ip如何固定 2、如果apt安

SpringBoot中使用 ThreadLocal 进行多线程上下文管理及注意事项小结

《SpringBoot中使用ThreadLocal进行多线程上下文管理及注意事项小结》本文详细介绍了ThreadLocal的原理、使用场景和示例代码,并在SpringBoot中使用ThreadLo... 目录前言技术积累1.什么是 ThreadLocal2. ThreadLocal 的原理2.1 线程隔离2

Go路由注册方法详解

《Go路由注册方法详解》Go语言中,http.NewServeMux()和http.HandleFunc()是两种不同的路由注册方式,前者创建独立的ServeMux实例,适合模块化和分层路由,灵活性高... 目录Go路由注册方法1. 路由注册的方式2. 路由器的独立性3. 灵活性4. 启动服务器的方式5.