本文主要是介绍uboot的relocation原理详细分析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
最近在一直在做uboot的移植工作,uboot中有很多值得学习的东西,之前总结过uboot的启动流程,但uboot一个非常核心的功能没有仔细研究,就是uboot的relocation功能。
这几天研究下uboot的relocation功能,记录在此,跟大家共享。
自己辛苦编辑,转载请注明出处,谢谢!
所谓的relocation,就是重定位,uboot运行后会将自身代码拷贝到sdram的另一个位置继续运行,这个在uboot启动流程分析中说过。
但基于以前的理解,一个完整可运行的bin文件,link时指定的链接地址,load时的加载地址,运行时的运行地址,这3个地址应该是一致的
relocation后运行地址不同于加载地址 特别是链接地址,ARM的寻址会不会出现问题?
新版uboot跟老版uboot不太一样的地方在于新版uboot不管uboot的load addr(entry pointer)在哪里,启动后会计算出一个靠近sdram顶端的地址,将自身代码拷贝到该地址,继续运行。
个人感觉uboot这样改进用意有二,一是为kernel腾出低端空间,防止kernel解压覆盖uboot,二是对于由静态存储器(spiflash nandflash)启动,这个relocation是必须的。
但是这样会有一个问题,relocation后uboot的运行地址跟其链接地址不一致,compiler会在link时确定了其中变量以及函数的绝对地址,链接地址 加载地址 运行地址应该一致,
这样看来,arm在寻址这些变量 函数时找到的应该是relocation之前的地址,这样relocation就没有意义了!
当然uboot不会这样,我们来分析一下uboot下relocation之后是如何寻址的,开始学习之前我是有3个疑问,如下
(1)如何对函数进行寻址调用
(2)如何对全局变量进行寻址操作(读写)
(3)对于全局指针变量中存储的其他变量或函数地址在relocation之后如何操作
搞清楚这3个问题,对于我来说relocation的原理就算是搞明白了。
为了搞清楚这些,在uboot的某一个文件中加入如下代码
void test_func(void)
{printf("test func\n");
}static void * test_func_val = test_func;
static int test_val = 10; void rel_dyn_test()
{test_val = 20; printf("test = 0x%x\n", test_func);printf("test_func = 0x%x\n", test_func_val);test_func();
}
rel_dyn_test函数中就包含了函数指针 变量赋值 函数调用这3种情况,寻址肯定要汇编级的追踪才可以,编译完成后反汇编,得到u-boot.dump(objdump用-D选项,将所有section都disassemble出来)
找到rel_dyn_test函数,如下:
80e9d3cc <test_func>:
80e9d3cc: e59f0000 ldr r0, [pc, #0] ; 80e9d3d4 <test_func+0x8>
80e9d3d0: eaffc2fb b 80e8dfc4 <printf>
80e9d3d4: 80eb1c39 .word 0x80eb1c3980e9d3d8 <rel_dyn_test>:
80e9d3d8: e59f202c ldr r2, [pc, #44] ; 80e9d40c <rel_dyn_test+0x34>
80e9d3dc: e3a03014 mov r3, #20 ; 0x14
80e9d3e0: e92d4010 push {r4, lr}
80e9d3e4: e59f1024 ldr r1, [pc, #36] ; 80e9d410 <rel_dyn_test+0x38>
80e9d3e8: e5823000 str r3, [r2]
80e9d3ec: e59f0020 ldr r0, [pc, #32] ; 80e9d414 <rel_dyn_test+0x3c>
80e9d3f0: ebffc2f3 bl 80e8dfc4 <prin
这篇关于uboot的relocation原理详细分析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!