uboot的relocation原理详细分析

2024-01-06 21:38

本文主要是介绍uboot的relocation原理详细分析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

最近在一直在做uboot的移植工作,uboot中有很多值得学习的东西,之前总结过uboot的启动流程,但uboot一个非常核心的功能没有仔细研究,就是uboot的relocation功能。

这几天研究下uboot的relocation功能,记录在此,跟大家共享。

自己辛苦编辑,转载请注明出处,谢谢!


所谓的relocation,就是重定位,uboot运行后会将自身代码拷贝到sdram的另一个位置继续运行,这个在uboot启动流程分析中说过。

但基于以前的理解,一个完整可运行的bin文件,link时指定的链接地址,load时的加载地址,运行时的运行地址,这3个地址应该是一致的

relocation后运行地址不同于加载地址 特别是链接地址,ARM的寻址会不会出现问题?


新版uboot跟老版uboot不太一样的地方在于新版uboot不管uboot的load addr(entry pointer)在哪里,启动后会计算出一个靠近sdram顶端的地址,将自身代码拷贝到该地址,继续运行。

个人感觉uboot这样改进用意有二,一是为kernel腾出低端空间,防止kernel解压覆盖uboot,二是对于由静态存储器(spiflash nandflash)启动,这个relocation是必须的。


但是这样会有一个问题,relocation后uboot的运行地址跟其链接地址不一致,compiler会在link时确定了其中变量以及函数的绝对地址,链接地址 加载地址 运行地址应该一致,

这样看来,arm在寻址这些变量 函数时找到的应该是relocation之前的地址,这样relocation就没有意义了!


当然uboot不会这样,我们来分析一下uboot下relocation之后是如何寻址的,开始学习之前我是有3个疑问,如下

(1)如何对函数进行寻址调用

(2)如何对全局变量进行寻址操作(读写)

(3)对于全局指针变量中存储的其他变量或函数地址在relocation之后如何操作

搞清楚这3个问题,对于我来说relocation的原理就算是搞明白了。


为了搞清楚这些,在uboot的某一个文件中加入如下代码

void test_func(void)
{printf("test func\n");
}static void * test_func_val = test_func;
static int test_val = 10; void rel_dyn_test()
{test_val = 20; printf("test = 0x%x\n", test_func);printf("test_func = 0x%x\n", test_func_val);test_func();
}
rel_dyn_test函数中就包含了函数指针 变量赋值 函数调用这3种情况,寻址肯定要汇编级的追踪才可以,编译完成后反汇编,得到u-boot.dump(objdump用-D选项,将所有section都disassemble出来)

找到rel_dyn_test函数,如下:

80e9d3cc <test_func>:
80e9d3cc:   e59f0000    ldr r0, [pc, #0]    ; 80e9d3d4 <test_func+0x8>
80e9d3d0:   eaffc2fb    b   80e8dfc4 <printf>
80e9d3d4:   80eb1c39    .word   0x80eb1c3980e9d3d8 <rel_dyn_test>:
80e9d3d8:   e59f202c    ldr r2, [pc, #44]   ; 80e9d40c <rel_dyn_test+0x34>
80e9d3dc:   e3a03014    mov r3, #20 ; 0x14 
80e9d3e0:   e92d4010    push    {r4, lr}
80e9d3e4:   e59f1024    ldr r1, [pc, #36]   ; 80e9d410 <rel_dyn_test+0x38>
80e9d3e8:   e5823000    str r3, [r2]
80e9d3ec:   e59f0020    ldr r0, [pc, #32]   ; 80e9d414 <rel_dyn_test+0x3c>
80e9d3f0:   ebffc2f3    bl  80e8dfc4 <prin

这篇关于uboot的relocation原理详细分析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/577702

相关文章

Java编译生成多个.class文件的原理和作用

《Java编译生成多个.class文件的原理和作用》作为一名经验丰富的开发者,在Java项目中执行编译后,可能会发现一个.java源文件有时会产生多个.class文件,从技术实现层面详细剖析这一现象... 目录一、内部类机制与.class文件生成成员内部类(常规内部类)局部内部类(方法内部类)匿名内部类二、

Python中随机休眠技术原理与应用详解

《Python中随机休眠技术原理与应用详解》在编程中,让程序暂停执行特定时间是常见需求,当需要引入不确定性时,随机休眠就成为关键技巧,下面我们就来看看Python中随机休眠技术的具体实现与应用吧... 目录引言一、实现原理与基础方法1.1 核心函数解析1.2 基础实现模板1.3 整数版实现二、典型应用场景2

Java的IO模型、Netty原理解析

《Java的IO模型、Netty原理解析》Java的I/O是以流的方式进行数据输入输出的,Java的类库涉及很多领域的IO内容:标准的输入输出,文件的操作、网络上的数据传输流、字符串流、对象流等,这篇... 目录1.什么是IO2.同步与异步、阻塞与非阻塞3.三种IO模型BIO(blocking I/O)NI

JAVA封装多线程实现的方式及原理

《JAVA封装多线程实现的方式及原理》:本文主要介绍Java中封装多线程的原理和常见方式,通过封装可以简化多线程的使用,提高安全性,并增强代码的可维护性和可扩展性,需要的朋友可以参考下... 目录前言一、封装的目标二、常见的封装方式及原理总结前言在 Java 中,封装多线程的原理主要围绕着将多线程相关的操

kotlin中的模块化结构组件及工作原理

《kotlin中的模块化结构组件及工作原理》本文介绍了Kotlin中模块化结构组件,包括ViewModel、LiveData、Room和Navigation的工作原理和基础使用,本文通过实例代码给大家... 目录ViewModel 工作原理LiveData 工作原理Room 工作原理Navigation 工

Java的volatile和sychronized底层实现原理解析

《Java的volatile和sychronized底层实现原理解析》文章详细介绍了Java中的synchronized和volatile关键字的底层实现原理,包括字节码层面、JVM层面的实现细节,以... 目录1. 概览2. Synchronized2.1 字节码层面2.2 JVM层面2.2.1 ente

MySQL的隐式锁(Implicit Lock)原理实现

《MySQL的隐式锁(ImplicitLock)原理实现》MySQL的InnoDB存储引擎中隐式锁是一种自动管理的锁,用于保证事务在行级别操作时的数据一致性和安全性,本文主要介绍了MySQL的隐式锁... 目录1. 背景:什么是隐式锁?2. 隐式锁的工作原理3. 隐式锁的类型4. 隐式锁的实现与源代码分析4

MySQL中Next-Key Lock底层原理实现

《MySQL中Next-KeyLock底层原理实现》Next-KeyLock是MySQLInnoDB存储引擎中的一种锁机制,结合记录锁和间隙锁,用于高效并发控制并避免幻读,本文主要介绍了MySQL中... 目录一、Next-Key Lock 的定义与作用二、底层原理三、源代码解析四、总结Next-Key L

Spring Cloud Hystrix原理与注意事项小结

《SpringCloudHystrix原理与注意事项小结》本文介绍了Hystrix的基本概念、工作原理以及其在实际开发中的应用方式,通过对Hystrix的深入学习,开发者可以在分布式系统中实现精细... 目录一、Spring Cloud Hystrix概述和设计目标(一)Spring Cloud Hystr

MySQL中的MVCC底层原理解读

《MySQL中的MVCC底层原理解读》本文详细介绍了MySQL中的多版本并发控制(MVCC)机制,包括版本链、ReadView以及在不同事务隔离级别下MVCC的工作原理,通过一个具体的示例演示了在可重... 目录简介ReadView版本链演示过程总结简介MVCC(Multi-Version Concurr