只会用 xxl-job?更强大的新一代分布式任务调度框架来了!

2024-01-06 13:28

本文主要是介绍只会用 xxl-job?更强大的新一代分布式任务调度框架来了!,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

前言

PowerJob是新一代分布式任务调度与计算框架,支持CRON、API、固定频率、固定延迟等调度策略,提供工作流来编排任务解决依赖关系,能让您轻松完成作业的调度与繁杂任务的分布式计算。

文章来源:https://blog.csdn.net/LY_624/article/details/106987036

为什么选择PowerJob?

当前市面上流行的作业调度框架有老牌的Quartz、基于Quartz的elastic-job和原先基于Quartz后面移除依赖的xxl-job,这里分别谈一些这些框架现存的缺点。

Quartz可以视为第一代任务调度框架,基本上是现有所有分布式调度框架的“祖宗”。由于历史原因,它不提供Web界面,只能通过API完成任务的配置,使用起来不够方便和灵活,同时它仅支持单机执行,无法有效利用整个集群的计算能力。

xxl-job可以视为第二代任务调度框架,在一定程度上解决了Quartz的不足,在过去几年中是个非常优秀的调度框架,不过放到今天来看,还是存在着一些不足的,具体如下:

  • 数据库支持单一: 仅支持MySQL,使用其他DB需要自己魔改代码

  • 有限的分布式计算能力: 仅支持静态分片,无法很好的完成复杂任务的计算

  • 不支持工作流: 无法配置各个任务之间的依赖关系,不适用于有DAG需求的场景

正所谓长江后浪推前浪,在如今这个数据量日益增长、业务越来越复杂的年代,急需一款更为强大的任务调度框架来解决上诉问题,而PowerJob因此应运而生。

图片

PowerJob可以被认为是第三代任务调度框架,在任务调度的基础上,还额外提供了分布式计算和工作流功能,其主要特性如下:

  • 使用简单: 提供前端Web界面,允许开发者可视化地完成调度任务的管理(增、删、改、查)、任务运行状态监控和运行日志查看等功能。

  • 定时策略完善: 支持CRON表达式、固定频率、固定延迟和API四种定时调度策略。

  • 执行模式丰富: 支持单机、广播、Map、MapReduce四种执行模式,其中Map/MapReduce处理器能使开发者寥寥数行代码便获得集群分布式计算的能力。

  • DAG工作流支持: 支持在线配置任务依赖关系,可视化得对任务进行编排,同时还支持上下游任务间的数据传递

  • 执行器支持广泛: 支持Spring Bean、内置/外置Java类、Shell、Python等处理器,应用范围广。

  • 运维便捷: 支持在线日志功能,执行器产生的日志可以在前端控制台页面实时显示,降低debug成本,极大地提高开发效率。

  • 依赖精简: 最小仅依赖关系型数据库(MySQL/PostgreSQL/Oracle/MS SQLServer…),同时支持所有Spring Data JPA所支持的关系型数据库。

  • 高可用&高性能: 调度服务器经过精心设计,一改其他调度框架基于数据库锁的策略,实现了无锁化调度。部署多个调度服务器可以同时实现高可用和性能的提升(支持无限的水平扩展)。

  • 故障转移与恢复: 任务执行失败后,可根据配置的重试策略完成重试,只要执行器集群有足够的计算节点,任务就能顺利完成。

同类产品对比

QuartZxxl-jobSchedulerX 2.0PowerJob
定时类型CRONCRONCRON、固定频率、固定延迟、OpenAPICRON、固定频率、固定延迟、OpenAPI
任务类型内置Java内置Java、GLUE Java、Shell、Python等脚本内置Java、外置Java(FatJar)、Shell、Python等脚本内置Java、外置Java(容器)、Shell、Python等脚本
分布式任务静态分片MapReduce动态分片MapReduce动态分片
在线任务治理不支持支持支持支持
日志白屏化不支持支持不支持支持
调度方式及性能基于数据库锁,有性能瓶颈基于数据库锁,有性能瓶颈不详无锁化设计,性能强劲无上限
报警监控邮件短信邮件,提供接口允许开发者扩展
系统依赖JDBC支持的关系型数据库(MySQL、Oracle…)MySQL人民币(公测期间免费,哎,帮打个广告吧)任意Spring Data Jpa支持的关系型数据库(MySQL、Oracle…)
DAG工作流不支持不支持支持支持

适用场景

有定时执行需求的业务场景:如每天凌晨全量同步数据、生成业务报表等。

有需要全部机器一同执行的业务场景:如使用广播执行模式清理集群日志。

有需要分布式处理的业务场景:比如需要更新一大批数据,单机执行耗时非常长,可以使用Map/MapReduce处理器完成任务的分发,调动整个集群加速计算。

整体架构

图片

快速开始

PowerJob由调度服务器(powerjob-server)和执行器(powerjob-worker)两部分组成,powerjob-server负责提供Web服务和完成任务的调度,powerjob-worker则负责执行用户所编写的任务代码,同时提供分布式计算能力。

初始化项目

git clone https://github.com/KFCFans/PowerJob.git

导入 IDE,源码结构如下,我们需要启动调度服务器(powerjob-server),同时在samples工程中编写自己的处理器代码

图片

启动调度服务器

创建数据库 powerjob-daily

修改配置文件,配置文件的说明官方文档写的非常详细,此处不再赘述。需要修改的地方为数据库配置spring.datasource.core.jdbc-urlspring.datasource.core.usernamespring.datasource.core.password,当然,有mongoDB的同学也可以修改spring.data.mongodb.uri以获取完全版体验。

oms.env=DAILY
logging.config=classpath:logback-dev.xml###### 数据库配置 #######
spring.datasource.core.driver-class-name=com.mysql.cj.jdbc.Driver
spring.datasource.core.jdbc-url=jdbc:mysql://remotehost:3306/powerjob-daily?useUnicode=true&characterEncoding=UTF-8
spring.datasource.core.username=root
spring.datasource.core.password=No1Bug2Please3!
spring.datasource.core.hikari.maximum-pool-size=20
spring.datasource.core.hikari.minimum-idle=5###### mongoDB配置,非核心依赖,可移除 #######
spring.data.mongodb.uri=mongodb://remotehost:27017/powerjob-daily###### 邮件配置(启用邮件报警则需要) #######
spring.mail.host=smtp.163.com
spring.mail.username=zqq
spring.mail.password=qqz
spring.mail.properties.mail.smtp.auth=true
spring.mail.properties.mail.smtp.starttls.enable=true
spring.mail.properties.mail.smtp.starttls.required=true###### 资源清理配置 #######
oms.log.retention.local=1
oms.log.retention.remote=1
oms.container.retention.local=1
oms.container.retention.remote=-1
oms.instanceinfo.retention=1###### 缓存配置 #######
oms.instance.metadata.cache.size=1024

1、完成配置文件的修改后,可以直接通过启动类com.github.kfcfans.powerjob.server.OhMyApplication启动调度服务器,观察启动日志,查看是否启动成功~启动成功后,访问 http://127.0.0.1:7700/ ,如果能顺利出现Web界面,则说明调度服务器启动成功!

2、注册应用:点击主页应用注册按钮,填入 oms-test和控制台密码(用于进入控制台),注册示例应用(当然你也可以注册其他的appName,只是别忘记在示例程序中同步修改~)

图片

编写示例代码

进入示例工程(powerjob-worker-samples),修改配置文件连接powerjob-server并编写自己的处理器代码。

1、修改powerjob-worker-samples的启动配置类com.github.kfcfans.powerjob.samples.OhMySchedulerConfig,将AppName修改为刚刚在控制台注册的名称。

@Configuration
public class OhMySchedulerConfig {@Beanpublic OhMyWorker initOMS() throws Exception {// 服务器HTTP地址(端口号为 server.port,而不是 ActorSystem port)List<String> serverAddress = Lists.newArrayList("127.0.0.1:7700");// 1. 创建配置文件OhMyConfig config = new OhMyConfig();config.setPort(27777);config.setAppName("oms-test");config.setServerAddress(serverAddress);// 如果没有大型 Map/MapReduce 的需求,建议使用内存来加速计算config.setStoreStrategy(StoreStrategy.MEMORY);// 2. 创建 Worker 对象,设置配置文件OhMyWorker ohMyWorker = new OhMyWorker();ohMyWorker.setConfig(config);return ohMyWorker;}
}

2、编写自己的处理器:随便找个地方新建类,继承你想要使用的处理器(各个处理器的介绍可见官方文档,文档非常详细),这里为了简单演示,选择使用单机处理器BasicProcessor,以下是代码示例。

@Slf4j
@Component
public class StandaloneProcessorDemo implements BasicProcessor {@Overridepublic ProcessResult process(TaskContext context) throws Exception {OmsLogger omsLogger = context.getOmsLogger();omsLogger.info("StandaloneProcessorDemo start process,context is {}.", context);System.out.println("jobParams is " + context.getJobParams());return new ProcessResult(true, "process successfully~");}
}

3、启动示例程序,即直接运行主类com.github.kfcfans.powerjob.samples.SampleApplication,观察控制台输出信息,判断是否启动成功。

任务的配置与运行

调度服务器与示例工程都启动完毕后,再次前往Web页面( http://127.0.0.1:7700/ ),进行任务的配置与运行。

1、在首页输入框输入配置的应用名称,成功操作后会正式进入前端管理界面。

图片

2、点击任务管理 -> 新建任务(右上角),开始创建任务。

图片

3、完成任务创建后,即可在控制台看到刚才创建的任务,如果觉得等待调度太过于漫长,可以直接点击运行按钮,立即运行本任务。

图片

4、前往任务示例边栏,查看任务的运行状态和在线日志

图片

基础的教程到这里也就结束了~更多功能示例可见官方文档,工作流、MapReduce、容器等高级特性等你来探索!

相关链接

项目地址:

https://github.com/KFCFans/PowerJob

官方文档:

https://www.yuque.com/powerjob/guidence/ztn4i5

在线试用:

https://www.yuque.com/powerjob/guidence/hnbskn

这篇关于只会用 xxl-job?更强大的新一代分布式任务调度框架来了!的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/576496

相关文章

springboot整合 xxl-job及使用步骤

《springboot整合xxl-job及使用步骤》XXL-JOB是一个分布式任务调度平台,用于解决分布式系统中的任务调度和管理问题,文章详细介绍了XXL-JOB的架构,包括调度中心、执行器和Web... 目录一、xxl-job是什么二、使用步骤1. 下载并运行管理端代码2. 访问管理页面,确认是否启动成功

Golang使用etcd构建分布式锁的示例分享

《Golang使用etcd构建分布式锁的示例分享》在本教程中,我们将学习如何使用Go和etcd构建分布式锁系统,分布式锁系统对于管理对分布式系统中共享资源的并发访问至关重要,它有助于维护一致性,防止竞... 目录引言环境准备新建Go项目实现加锁和解锁功能测试分布式锁重构实现失败重试总结引言我们将使用Go作

Redis分布式锁使用及说明

《Redis分布式锁使用及说明》本文总结了Redis和Zookeeper在高可用性和高一致性场景下的应用,并详细介绍了Redis的分布式锁实现方式,包括使用Lua脚本和续期机制,最后,提到了RedLo... 目录Redis分布式锁加锁方式怎么会解错锁?举个小案例吧解锁方式续期总结Redis分布式锁如果追求

MyBatis框架实现一个简单的数据查询操作

《MyBatis框架实现一个简单的数据查询操作》本文介绍了MyBatis框架下进行数据查询操作的详细步骤,括创建实体类、编写SQL标签、配置Mapper、开启驼峰命名映射以及执行SQL语句等,感兴趣的... 基于在前面几章我们已经学习了对MyBATis进行环境配置,并利用SqlSessionFactory核

cross-plateform 跨平台应用程序-03-如果只选择一个框架,应该选择哪一个?

跨平台系列 cross-plateform 跨平台应用程序-01-概览 cross-plateform 跨平台应用程序-02-有哪些主流技术栈? cross-plateform 跨平台应用程序-03-如果只选择一个框架,应该选择哪一个? cross-plateform 跨平台应用程序-04-React Native 介绍 cross-plateform 跨平台应用程序-05-Flutte

Spring框架5 - 容器的扩展功能 (ApplicationContext)

private static ApplicationContext applicationContext;static {applicationContext = new ClassPathXmlApplicationContext("bean.xml");} BeanFactory的功能扩展类ApplicationContext进行深度的分析。ApplicationConext与 BeanF

数据治理框架-ISO数据治理标准

引言 "数据治理"并不是一个新的概念,国内外有很多组织专注于数据治理理论和实践的研究。目前国际上,主要的数据治理框架有ISO数据治理标准、GDI数据治理框架、DAMA数据治理管理框架等。 ISO数据治理标准 改标准阐述了数据治理的标准、基本原则和数据治理模型,是一套完整的数据治理方法论。 ISO/IEC 38505标准的数据治理方法论的核心内容如下: 数据治理的目标:促进组织高效、合理地

ZooKeeper 中的 Curator 框架解析

Apache ZooKeeper 是一个为分布式应用提供一致性服务的软件。它提供了诸如配置管理、分布式同步、组服务等功能。在使用 ZooKeeper 时,Curator 是一个非常流行的客户端库,它简化了 ZooKeeper 的使用,提供了高级的抽象和丰富的工具。本文将详细介绍 Curator 框架,包括它的设计哲学、核心组件以及如何使用 Curator 来简化 ZooKeeper 的操作。 1

集中式版本控制与分布式版本控制——Git 学习笔记01

什么是版本控制 如果你用 Microsoft Word 写过东西,那你八成会有这样的经历: 想删除一段文字,又怕将来这段文字有用,怎么办呢?有一个办法,先把当前文件“另存为”一个文件,然后继续改,改到某个程度,再“另存为”一个文件。就这样改着、存着……最后你的 Word 文档变成了这样: 过了几天,你想找回被删除的文字,但是已经记不清保存在哪个文件了,只能挨个去找。真麻烦,眼睛都花了。看

【Kubernetes】K8s 的安全框架和用户认证

K8s 的安全框架和用户认证 1.Kubernetes 的安全框架1.1 认证:Authentication1.2 鉴权:Authorization1.3 准入控制:Admission Control 2.Kubernetes 的用户认证2.1 Kubernetes 的用户认证方式2.2 配置 Kubernetes 集群使用密码认证 Kubernetes 作为一个分布式的虚拟