多篇论文介绍-DSConv-原文

2024-01-05 05:50

本文主要是介绍多篇论文介绍-DSConv-原文,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

论文地址 https://arxiv.org/pdf/1901.01928v1.pdf

目录

01 改进 YOLOv5的交通灯实时检测鲁棒算法

01 作用

02 模型介绍

02 基于改进YOLOv7一tiny 算法的输电线路螺栓缺销检测

01 作用

02 模型介绍

03 结合注意力机制的 YOLOv5红绿灯检测算法

01 作用

02 模型介绍

04 基于改进YOLOv7的SAR图像舰船目标检测算法

01 作用

02 模型介绍


01 改进 YOLOv5的交通灯实时检测鲁棒算法

01 作用

        使用 DSConv卷积核减少模型参数;

02 模型介绍

02 基于改进YOLOv7一tiny 算法的输电线路螺栓缺销检测

01 作用

        该算法采用高效的分布移位卷积(distibution shiting convolution,DSConv)来替换YOLOv7-tiny网络中的3x3卷积,以提高模型的计算速度并降低计算复杂度;

02 模型介绍

        在网络设计中,DSConv是可用于各种卷积神经网络推理和训练的即插即用替代品,具有2个主要优点:首先,DSConv可以提高标准卷积的存储效率和速度;其次,通过将网络中的3x3卷积替换为DSConv,可以在略微降低模型精度的情况下提高检测速度,并降低模型的运算量。以往的实验结果表明,将DSConv应用于神经网络中,可以有效降低计算复杂度,每秒10亿次的浮点运算数(giga floating-point operations per second,GFLOPs)可从13.2降低至5.6。因此,DSConv是有效的优化选择,其基本结构如图2所示。

        由图2可知,DSConv是使用量化和分布位移来模拟卷积行为的方法;其中,☉表示哈达玛算子(Hadamard operator)。该方法由2个部分组成:可变量化内核( variable quantizedkernel, VQK)和分布位移。VQK仅保存位长可变的整数值,这是DSConv量化分量的一部分,可以使乘法速度更快,存储效率更高;分布位移目的是移动VQK的分布,以模拟原始卷积核的分布,“位移”是指缩放和偏置操作,用2个张量来实现:内核分布移位器(kernel distribution shifter ,KDS)和通道分布移位器(channeldistribution shifier ,CDS),前者移动VQK每个块中的分布,后者移动每个通道中的分布。通过DSConv,卷积核可以减少到原始大小的一部分,从而实现更快、更节省内存的计算。

03 结合注意力机制的YOLOv5红绿灯检测算法

01 作用

        针对引入注意力和检测层导致计算量增大、速度降低的问题,采用分布移位卷积替换部分主干卷积的方法,简化模型,提升速度。

02 模型介绍

        分析模型规模时发现,引入CA注意力机制和增加检测层在提高精度和召回率的同时,也增加了参数量,使模型复杂程度加深,为解决这一问题,利用分布移位卷积(DSConv)替换主干网络的部分标准正则卷积,在保证精度的同时,减少参数量,简化模型的复杂程度。
        DSConv是标准卷积的即插即用替代品,可直接用于任何卷积神经网络,如图5所示,DSconv卷积层将传统的卷积内核分解为2个组件:可变量化内核(VQK)和分布式移位。DSConv利用量化和分布移位来模拟卷积层的行为,首先通过在VQK中存储整数值来实现较低的存储器使用和较高的速度,然后通过应用基于内核和基于通道的分布偏移来保持与原始卷积相同的输出,达到提高模型速度和减少参数量的目的。

        通过对标准卷积的分析,设计了2种新的主干网络卷积结构,如图6所示。Backbone-1 结构将第三层和第五层的卷积核替换成DSConv ,参数量减少约5% ,如图6( a)所示;在 Backbone-1 结构的基础上,将第一层和第七层卷积核替换成DSConv ,进一步降低了15%的参数量,提升了运行速度,如图6(b)所示。

04 基于改进YOLOv7SAR图像舰船目标检测算法

01 作用

        其次,引入卷积变体DSConv,通过在可变量化内核中仅储存整数来实现减少计算量;同时引入卷积层变体DSConv,将原始浮点卷积核参数量化,再通过分布偏移还原原始参数,实现减少内存加快运算速度。引入高效卷积算子DSConv[19]使用量化技术压缩神经网络,减少储存网络占用率。

02 模型介绍

        量化是一种提高卷积神经网络运行速度和缩减内存的流行方法,本文引用一种分布偏移卷积(DSConv)。DSConv是一种灵敏的量化卷积算子,用成本低的多的整数运算代替单精度运算,同时保证卷积内核权重及输出的概率分布。DSConv将原始卷积核拆为两个部分:其中一部分仅有整数值张量,不能训练,并依据预训练网络中浮点的权重分布计算。另一个部分由分布偏移器张量组成:一个分布偏移分布偏移器移动所有内核的分布,另一个移动所有通道。分布偏移部分的权重可以被训练,使网络适应新的任务。

        在可变量化核中仅存放整数值,与原始张量大小一样,参数值一旦设置不能更改,同时通过分布偏移以保存与原始卷积内核相同的输出。在预训练网络时,将权重张量滤波器按深度划分为长度为 B 的块,所有的块共享一个浮点值,然后对所有块量化处理,每个张量节约的内存为公式

5 )。

        其中 C i 为通道数, b 为所选的超参数设置。

这篇关于多篇论文介绍-DSConv-原文的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/571852

相关文章

性能测试介绍

性能测试是一种测试方法,旨在评估系统、应用程序或组件在现实场景中的性能表现和可靠性。它通常用于衡量系统在不同负载条件下的响应时间、吞吐量、资源利用率、稳定性和可扩展性等关键指标。 为什么要进行性能测试 通过性能测试,可以确定系统是否能够满足预期的性能要求,找出性能瓶颈和潜在的问题,并进行优化和调整。 发现性能瓶颈:性能测试可以帮助发现系统的性能瓶颈,即系统在高负载或高并发情况下可能出现的问题

水位雨量在线监测系统概述及应用介绍

在当今社会,随着科技的飞速发展,各种智能监测系统已成为保障公共安全、促进资源管理和环境保护的重要工具。其中,水位雨量在线监测系统作为自然灾害预警、水资源管理及水利工程运行的关键技术,其重要性不言而喻。 一、水位雨量在线监测系统的基本原理 水位雨量在线监测系统主要由数据采集单元、数据传输网络、数据处理中心及用户终端四大部分构成,形成了一个完整的闭环系统。 数据采集单元:这是系统的“眼睛”,

Hadoop数据压缩使用介绍

一、压缩原则 (1)运算密集型的Job,少用压缩 (2)IO密集型的Job,多用压缩 二、压缩算法比较 三、压缩位置选择 四、压缩参数配置 1)为了支持多种压缩/解压缩算法,Hadoop引入了编码/解码器 2)要在Hadoop中启用压缩,可以配置如下参数

图神经网络模型介绍(1)

我们将图神经网络分为基于谱域的模型和基于空域的模型,并按照发展顺序详解每个类别中的重要模型。 1.1基于谱域的图神经网络         谱域上的图卷积在图学习迈向深度学习的发展历程中起到了关键的作用。本节主要介绍三个具有代表性的谱域图神经网络:谱图卷积网络、切比雪夫网络和图卷积网络。 (1)谱图卷积网络 卷积定理:函数卷积的傅里叶变换是函数傅里叶变换的乘积,即F{f*g}

AI hospital 论文Idea

一、Benchmarking Large Language Models on Communicative Medical Coaching: A Dataset and a Novel System论文地址含代码 大多数现有模型和工具主要迎合以患者为中心的服务。这项工作深入探讨了LLMs在提高医疗专业人员的沟通能力。目标是构建一个模拟实践环境,人类医生(即医学学习者)可以在其中与患者代理进行医学

C++——stack、queue的实现及deque的介绍

目录 1.stack与queue的实现 1.1stack的实现  1.2 queue的实现 2.重温vector、list、stack、queue的介绍 2.1 STL标准库中stack和queue的底层结构  3.deque的简单介绍 3.1为什么选择deque作为stack和queue的底层默认容器  3.2 STL中对stack与queue的模拟实现 ①stack模拟实现

论文翻译:arxiv-2024 Benchmark Data Contamination of Large Language Models: A Survey

Benchmark Data Contamination of Large Language Models: A Survey https://arxiv.org/abs/2406.04244 大规模语言模型的基准数据污染:一项综述 文章目录 大规模语言模型的基准数据污染:一项综述摘要1 引言 摘要 大规模语言模型(LLMs),如GPT-4、Claude-3和Gemini的快

论文阅读笔记: Segment Anything

文章目录 Segment Anything摘要引言任务模型数据引擎数据集负责任的人工智能 Segment Anything Model图像编码器提示编码器mask解码器解决歧义损失和训练 Segment Anything 论文地址: https://arxiv.org/abs/2304.02643 代码地址:https://github.com/facebookresear

Mysql BLOB类型介绍

BLOB类型的字段用于存储二进制数据 在MySQL中,BLOB类型,包括:TinyBlob、Blob、MediumBlob、LongBlob,这几个类型之间的唯一区别是在存储的大小不同。 TinyBlob 最大 255 Blob 最大 65K MediumBlob 最大 16M LongBlob 最大 4G

FreeRTOS-基本介绍和移植STM32

FreeRTOS-基本介绍和STM32移植 一、裸机开发和操作系统开发介绍二、任务调度和任务状态介绍2.1 任务调度2.1.1 抢占式调度2.1.2 时间片调度 2.2 任务状态 三、FreeRTOS源码和移植STM323.1 FreeRTOS源码3.2 FreeRTOS移植STM323.2.1 代码移植3.2.2 时钟中断配置 一、裸机开发和操作系统开发介绍 裸机:前后台系