【3y】从零单排学Redis【青铜】

2024-01-03 22:30
文章标签 redis 青铜 单排 3y

本文主要是介绍【3y】从零单排学Redis【青铜】,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

前言

只有光头才能变强

redis

最近在学Redis,我相信只要是接触过Java开发的都会听过Redis这么一个技术。面试也是非常高频的一个知识点,之前一直都是处于了解阶段。秋招过后这段时间是没有什么压力的,所以打算系统学学Redis,这也算是我从零学习Redis的笔记吧。

本文力求讲清每个知识点,希望大家看完能有所收获。

一、介绍一下Redis

首先,肯定是去官网看看官方是怎么介绍Redis的啦。https://redis.io/topics/introduction

如果像我一样,英语可能不太好的,可能看不太懂。没事,咱们Chrome浏览器可以切换成中文的,中文是我们的母语,肯定没啥压力了。Eumm…

读完之后,发现中文也就那样了。

一大堆没见过的技术:lua(Lua脚本)、replication(复制)、Redis Sentinel(哨兵)、Redis Cluster(Redis 集群),当然我们也会有看得懂的技术:transactions(事务)、different levels of on-disk persistence(数据持久化)、LRU eviction(LRU淘汰机制)…

至少官方介绍Redis的第一句应该是可以很容易看懂:“Redis is an open source (BSD licensed),in-memory data structure store, used as a database,cache and message broker.”

Redis是一个开源的,基于内存的数据结构存储,可用作于数据库、缓存、消息中间件。

  • 从官方的解释上,我们可以知道:Redis是基于内存,支持多种数据结构。
  • 从经验的角度上,我们可以知道:Redis常用作于缓存。

就我个人认为:学习一种新技术,先把握该技术整体的知识(思想),再扣细节,这样学习起来会比较轻松一些。所以我们先以“内存”、“数据结构”、“缓存”来对Redis入门。

1.1为什么要用Redis?

从上面可知:Redis是基于内存,常用作于缓存的一种技术,并且Redis存储的方式是以key-value的形式。

我们可以发现这不就是Java的Map容器所拥有的特性吗,那为什么还需要Redis呢?

  • Java实现的Map是本地缓存,如果有多台实例(机器)的话,每个实例都需要各自保存一份缓存,缓存不具有一致性
  • Redis实现的是分布式缓存,如果有多台实例(机器)的话,每个实例都共享一份缓存,缓存具有一致性
  • Java实现的Map不是专业做缓存的,JVM内存太大容易挂掉的。一般用做于容器来存储临时数据,缓存的数据随着JVM销毁而结束。Map所存储的数据结构,缓存过期机制等等是需要程序员自己手写的。
  • Redis是专业做缓存的,可以用几十个G内存来做缓存。Redis一般用作于缓存,可以将缓存数据保存在硬盘中,Redis重启了后可以将其恢复。原生提供丰富的数据结构、缓存过期机制等等简单好用的功能。

参考资料:

  • 为什么要用redis而不用map做缓存?https://segmentfault.com/q/1010000009106416

1.2为什么要用缓存?

如果我们的网站出现了性能问题(访问时间慢),按经验来说,一般是由于数据库撑不住了。因为一般数据库的读写都是要经过磁盘的,而磁盘的速度可以说是相当慢的(相对内存来说)

  • 科普文:让 CPU 告诉你硬盘和网络到底有多慢https://zhuanlan.zhihu.com/p/24726196

数据库撑不住了

如果学过Mybaits、Hibernate的同学就可以知道,它们有一级缓存、二级缓存这样的功能(终究来说还是本地缓存)。目的就是为了:不用每次读取的时候,都要查一次数据库

有了缓存之后,我们的访问就变成这样了:

有了缓存提高了并发和性能

二、Redis的数据结构

本文不会讲述命令的使用方式,具体的如何使用可查询API。

  • Redis 命令参考:http://doc.redisfans.com/
  • try Redis(不用安装Redis即可体验Redis命令):http://try.redis.io/

Redis支持丰富的数据结构,常用的有string、list、hash、set、sortset这几种。学习这些数据结构是使用Redis的基础!

“Redis is written in ANSI C”–>Redis由C语言编写

首先还是得声明一下,Redis的存储是以key-value的形式的。Redis中的key一定是字符串,value可以是string、list、hash、set、sortset这几种常用的。

redis数据结构

但要值得注意的是:Redis并没有直接使用这些数据结构来实现key-value数据库,而是基于这些数据结构创建了一个对象系统

  • 简单来说:Redis使用对象来表示数据库中的键和值。每次我们在Redis数据库中新创建一个键值对时,至少会创建出两个对象。一个是键对象,一个是值对象。

Redis中的每个对象都由一个redisObject结构来表示:


typedef struct redisObject{// 对象的类型unsigned type 4:;// 对象的编码格式unsigned encoding:4;// 指向底层实现数据结构的指针void * ptr;//.....}robj;

数据结构对应的类型与编码

简单来说就是Redis对key-value封装成对象,key是一个对象,value也是一个对象。每个对象都有type(类型)、encoding(编码)、ptr(指向底层数据结构的指针)来表示。

以值为1006的字符串对象为例

下面我就来说一下我们Redis常见的数据类型:string、list、hash、set、sortset。它们的底层数据结构究竟是怎么样的!

2.1SDS简单动态字符串

简单动态字符串(Simple dynamic string,SDS)

Redis中的字符串跟C语言中的字符串,是有点差距的

Redis使用sdshdr结构来表示一个SDS值:


struct sdshdr{// 字节数组,用于保存字符串char buf[];// 记录buf数组中已使用的字节数量,也是字符串的长度int len;// 记录buf数组未使用的字节数量int free;
}

例子:

SDS例子

2.1.1使用SDS的好处

SDS与C的字符串表示比较

  1. sdshdr数据结构中用len属性记录了字符串的长度。那么获取字符串的长度时,时间复杂度只需要O(1)
  2. SDS不会发生溢出的问题,如果修改SDS时,空间不足。先会扩展空间,再进行修改!(内部实现了动态扩展机制)。
  3. SDS可以减少内存分配的次数(空间预分配机制)。在扩展空间时,除了分配修改时所必要的空间,还会分配额外的空闲空间(free 属性)。
  4. SDS是二进制安全的,所有SDS API都会以处理二进制的方式来处理SDS存放在buf数组里的数据。

2.2链表

对于链表而言,我们不会陌生的了。在大学期间肯定开过数据结构与算法课程,链表肯定是讲过的了。在Java中Linkedxxx容器底层数据结构也是链表+[xxx]的。我们来看看Redis中的链表是怎么实现的:

使用listNode结构来表示每个节点:

typedef strcut listNode{//前置节点strcut listNode  *pre;//后置节点strcut listNode  *pre;//节点的值void  *value;}listNode

使用listNode是可以组成链表了,Redis中使用list结构来持有链表


typedef struct list{//表头结点listNode  *head;//表尾节点listNode  *tail;//链表长度unsigned long len;//节点值复制函数void *(*dup) (viod *ptr);//节点值释放函数void  (*free) (viod *ptr);//节点值对比函数int (*match) (void *ptr,void *key);}list

具体的结构如图:

2.2.1Redis链表的特性

Redis的链表有以下特性:

  • 无环双向链表
  • 获取表头指针,表尾指针,链表节点长度的时间复杂度均为O(1)
  • 链表使用void *指针来保存节点值,可以保存各种不同类型的值

2.3哈希表

声明:《Redis设计与实现》里边有“字典”这么一个概念,我个人认为还是直接叫哈希表比较通俗易懂。从代码上看:“字典”也是在哈希表基础上再抽象了一层而已。

在Redis中,key-value的数据结构底层就是哈希表来实现的。对于哈希表来说,我们也并不陌生。在Java中,哈希表实际上就是数组+链表的形式来构建的。下面我们来看看Redis的哈希表是怎么构建的吧。

在Redis里边,哈希表使用dictht结构来定义:

	typedef struct dictht{//哈希表数组dictEntry **table;  //哈希表大小unsigned long size;    //哈希表大小掩码,用于计算索引值//总是等于size-1unsigned long sizemark;     //哈希表已有节点数量unsigned long used;}dictht

哈希表的数据结构

我们下面继续写看看哈希表的节点是怎么实现的吧:

typedef struct dictEntry {//键void *key;//值union {void *value;uint64_tu64;int64_ts64;}v;    //指向下个哈希节点,组成链表struct dictEntry *next;}dictEntry;

从结构上看,我们可以发现:Redis实现的哈希表和Java中实现的是类似的。只不过Redis多了几个属性来记录常用的值:sizemark(掩码)、used(已有的节点数量)、size(大小)。

同样地,Redis为了更好的操作,对哈希表往上再封装了一层(参考上面的Redis实现链表),使用dict结构来表示:


typedef struct dict {//类型特定函数dictType *type;//私有数据void *privdata;//哈希表dictht ht[2];//rehash索引//当rehash不进行时,值为-1int rehashidx;  }dict;//-----------------------------------typedef struct dictType{//计算哈希值的函数unsigned int (*hashFunction)(const void * key);//复制键的函数void *(*keyDup)(void *private, const void *key);//复制值得函数void *(*valDup)(void *private, const void *obj);  //对比键的函数int (*keyCompare)(void *privdata , const void *key1, const void *key2)//销毁键的函数void (*keyDestructor)(void *private, void *key);//销毁值的函数void (*valDestructor)(void *private, void *obj);  }dictType

所以,最后我们可以发现,Redis所实现的哈希表最后的数据结构是这样子的:

从代码实现和示例图上我们可以发现,Redis中有两个哈希表

  • ht[0]:用于存放真实key-vlaue数据
  • ht[1]:用于扩容(rehash)

Redis中哈希算法和哈希冲突跟Java实现的差不多,它俩差异就是:

  • Redis哈希冲突时:是将新节点添加在链表的表头
  • JDK1.8后,Java在哈希冲突时:是将新的节点添加到链表的表尾

2.3.1rehash的过程

下面来具体讲讲Redis是怎么rehash的,因为我们从上面可以明显地看到,Redis是专门使用一个哈希表来做rehash的。这跟Java一次性直接rehash是有区别的。

在对哈希表进行扩展或者收缩操作时,reash过程并不是一次性地完成的,而是渐进式地完成的。

Redis在rehash时采取渐进式的原因:数据量如果过大的话,一次性rehash会有庞大的计算量,这很可能导致服务器一段时间内停止服务

Redis具体是rehash时这么干的:

  • (1:在字典中维持一个索引计数器变量rehashidx,并将设置为0,表示rehash开始。
  • (2:在rehash期间每次对字典进行增加、查询、删除和更新操作时,除了执行指定命令外;还会将ht[0]中rehashidx索引上的值rehash到ht[1],操作完成后rehashidx+1。
  • (3:字典操作不断执行,最终在某个时间点,所有的键值对完成rehash,这时将rehashidx设置为-1,表示rehash完成
  • (4:在渐进式rehash过程中,字典会同时使用两个哈希表ht[0]和ht[1],所有的更新、删除、查找操作也会在两个哈希表进行。例如要查找一个键的话,服务器会优先查找ht[0],如果不存在,再查找ht[1],诸如此类。此外当执行新增操作时,新的键值对一律保存到ht[1],不再对ht[0]进行任何操作,以保证ht[0]的键值对数量只减不增,直至变为空表。

2.4跳跃表(shiplist)

跳跃表(shiplist)是实现sortset(有序集合)的底层数据结构之一!

跳跃表可能对于大部分人来说不太常见,之前我在学习的时候发现了一篇不错的文章讲跳跃表的,建议大家先去看完下文再继续回来阅读:

  • 漫画算法:什么是跳跃表?http://blog.jobbole.com/111731/

Redis的跳跃表实现由zskiplist和zskiplistNode两个结构组成。其中zskiplist保存跳跃表的信息(表头,表尾节点,长度),zskiplistNode则表示跳跃表的节点

按照惯例,我们来看看zskiplistNode跳跃表节点的结构是怎么样的:


typeof struct zskiplistNode {// 后退指针struct zskiplistNode *backward;// 分值double score;// 成员对象robj *obj;// 层struct zskiplistLevel {// 前进指针struct zskiplistNode *forward;// 跨度unsigned int span;} level[];
} zskiplistNode;

zskiplistNode的对象示例图(带有不同层高的节点):

带有不同层高的节点

示例图如下:

跳跃表节点的示例图

zskiplist的结构如下:

typeof struct zskiplist {// 表头节点,表尾节点struct skiplistNode *header,*tail;// 表中节点数量unsigned long length;// 表中最大层数int level;
} zskiplist;

最后我们整个跳跃表的示例图如下:

跳跃表示例图

2.5整数集合(intset)

整数集合是set(集合)的底层数据结构之一。当一个set(集合)只包含整数值元素,并且元素的数量不多时,Redis就会采用整数集合(intset)作为set(集合)的底层实现。

整数集合(intset)保证了元素是不会出现重复的,并且是有序的(从小到大排序),intset的结构是这样子的:


typeof struct intset {// 编码方式unit32_t encoding;// 集合包含的元素数量unit32_t lenght;// 保存元素的数组int8_t contents[];
} intset;

intset示例图:

intset示例图

说明:虽然intset结构将contents属性声明为int8_t类型的数组,但实际上contents数组并不保存任何int8_t类型的值,contents数组的真正类型取决于encoding属性的值

  • INTSET_ENC_INT16
  • INTSET_ENC_INT32
  • INTSET_ENC_INT64

从编码格式的名字我们就可以知道,16,32,64编码对应能存放的数字范围是不一样的。16明显最少,64明显最大。

如果本来是INTSET_ENC_INT16的编码,想要存放大于INTSET_ENC_INT16编码能存放的整数值,此时就得编码升级(从16升级成32或者64)。步骤如下:

  • 1)根据新元素类型拓展整数集合底层数组的空间并为新元素分配空间。
  • 2)将底层数组现有的所以元素都转换成与新元素相同的类型,并将类型转换后的元素放到正确的位上,需要维持底层数组的有序性质不变。
  • 3)将新元素添加到底层数组。

另外一提:只支持升级操作,并不支持降级操作

2.6压缩列表(ziplist)

压缩列表(ziplist)是list和hash的底层实现之一。如果list的每个都是小整数值,或者是比较短的字符串,压缩列表(ziplist)作为list的底层实现。

压缩列表(ziplist)是Redis为了节约内存而开发的,是由一系列的特殊编码的连续内存块组成的顺序性数据结构。

压缩列表结构图例如下:

压缩列表的组成部分

下面我们看看节点的结构图:

压缩列表从表尾节点倒序遍历,首先指针通过zltail偏移量指向表尾节点,然后通过指向节点记录的前一个节点的长度依次向前遍历访问整个压缩列表

三、Redis中数据结构的对象

再次看回这张图,觉不觉得就很好理解了?

数据结构对应的类型与编码

3.1字符串(stirng)对象

在上面的图我们知道string类型有三种编码格式

  • int:整数值,这个整数值可以使用long类型来表示
    • 如果是浮点数,那就用embstr或者raw编码。具体用哪个就看这个数的长度了
  • embstr:字符串值,这个字符串值的长度小于39字节
  • raw:字符串值,这个字符串值的长度大于39字节

embstr和raw的区别

  • raw分配内存和释放内存的次数是两次,embstr是一次
  • embstr编码的数据保存在一块连续的内存里面

编码之间的转换

  • int类型如果存的不再是一个整数值,则会从int转成raw
  • embstr是只读的,在修改的时候回从embstr转成raw

3.2列表(list)对象

在上面的图我们知道list类型有两种编码格式

  • ziplist:字符串元素的长度都小于64个字节&&总数量少于512个
  • linkedlist:字符串元素的长度大于64个字节||总数量大于512个

ziplist编码的列表结构:

	redis > RPUSH numbers 1 "three" 5(integer) 3 

ziplist的列表结构

linkedlist编码的列表结构:

linkedlist编码的列表结构

编码之间的转换:

  • 原本是ziplist编码的,如果保存的数据长度太大或者元素数量过多,会转换成linkedlist编码的。

3.3哈希(hash)对象

在上面的图我们知道hash类型有两种编码格式

  • ziplist:key和value的字符串长度都小于64字节&&键值对总数量小于512
  • hashtable:key和value的字符串长度大于64字节||键值对总数量大于512

ziplist编码的哈希结构:

ziplist编码的哈希结构1
ziplist编码的哈希结构2

hashtable编码的哈希结构:

hashtable编码的哈希结构

编码之间的转换:

  • 原本是ziplist编码的,如果保存的数据长度太大或者元素数量过多,会转换成hashtable编码的。

3.4集合(set)对象

在上面的图我们知道set类型有两种编码格式

  • intset:保存的元素全都是整数&&总数量小于512
  • hashtable:保存的元素不是整数||总数量大于512

intset编码的集合结构:

intset编码的集合结构

hashtable编码的集合结构:

hashtable编码的集合结构

编码之间的转换:

  • 原本是intset编码的,如果保存的数据不是整数值或者元素数量大于512,会转换成hashtable编码的。

3.5有序集合(sortset)对象

在上面的图我们知道set类型有两种编码格式

  • ziplist:元素长度小于64&&总数量小于128
  • skiplist:元素长度大于64||总数量大于128

ziplist编码的有序集合结构:

ziplist编码的有序集合结构1

ziplist编码的有序集合结构2

skiplist编码的有序集合结构:

skiplist编码的有序集合结构

有序集合(sortset)对象同时采用skiplist和哈希表来实现

  • skiplist能够达到插入的时间复杂度为O(logn),根据成员查分值的时间复杂度为O(1)

编码之间的转换:

  • 原本是ziplist编码的,如果保存的数据长度大于64或者元素数量大于128,会转换成skiplist编码的。

3.6Redis对象一些细节

  • (1:服务器在执行某些命令的时候,会先检查给定的键的类型能否执行指定的命令。
    • 比如我们的数据结构是sortset,但你使用了list的命令。这是不对的,服务器会检查一下我们的数据结构是什么才会进一步执行命令
  • (2:Redis的对象系统带有引用计数实现的内存回收机制
    • 对象不再被使用的时候,对象所占用的内存会释放掉
  • (3:Redis会共享值为0到9999的字符串对象
  • (4:对象会记录自己的最后一次被访问时间,这个时间可以用于计算对象的空转时间。

最后

本文主要讲了一下Redis常用的数据结构,以及这些数据结构的底层设计是怎么样的。整体来说不会太难,因为这些数据结构我们在学习的过程中多多少少都接触过了,《Redis设计与实现》这本书写得也足够通俗易懂。

至于我们在使用的时候挑选哪些数据结构作为存储,可以简单看看:

  • string–>简单的key-value
  • list–>有序列表(底层是双向链表)–>可做简单队列
  • set–>无序列表(去重)–>提供一系列的交集、并集、差集的命令
  • hash–>哈希表–>存储结构化数据
  • sortset–>有序集合映射(member-score)–>排行榜

如果大家有更好的理解方式或者文章有错误的地方还请大家不吝在评论区留言,大家互相学习交流~~~

参考博客:

  • Redis简明教程http://bridgeforyou.cn/2018/05/19/Redis-Tutorial/
  • 五旬大爷教你一窥redis之谜https://zhuanlan.zhihu.com/p/34762100

参考资料:

  • 《Redis设计与实现》
  • 《Redis实战》

一个坚持原创的Java技术公众号:Java3y,欢迎大家关注

原创技术文章导航:

  • 文章的目录导航(脑图+海量视频资源):https://github.com/ZhongFuCheng3y/3y

这篇关于【3y】从零单排学Redis【青铜】的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/567256

相关文章

零基础学习Redis(10) -- zset类型命令使用

zset是有序集合,内部除了存储元素外,还会存储一个score,存储在zset中的元素会按照score的大小升序排列,不同元素的score可以重复,score相同的元素会按照元素的字典序排列。 1. zset常用命令 1.1 zadd  zadd key [NX | XX] [GT | LT]   [CH] [INCR] score member [score member ...]

Redis中使用布隆过滤器解决缓存穿透问题

一、缓存穿透(失效)问题 缓存穿透是指查询一个一定不存在的数据,由于缓存中没有命中,会去数据库中查询,而数据库中也没有该数据,并且每次查询都不会命中缓存,从而每次请求都直接打到了数据库上,这会给数据库带来巨大压力。 二、布隆过滤器原理 布隆过滤器(Bloom Filter)是一种空间效率很高的随机数据结构,它利用多个不同的哈希函数将一个元素映射到一个位数组中的多个位置,并将这些位置的值置

Lua 脚本在 Redis 中执行时的原子性以及与redis的事务的区别

在 Redis 中,Lua 脚本具有原子性是因为 Redis 保证在执行脚本时,脚本中的所有操作都会被当作一个不可分割的整体。具体来说,Redis 使用单线程的执行模型来处理命令,因此当 Lua 脚本在 Redis 中执行时,不会有其他命令打断脚本的执行过程。脚本中的所有操作都将连续执行,直到脚本执行完成后,Redis 才会继续处理其他客户端的请求。 Lua 脚本在 Redis 中原子性的原因

laravel框架实现redis分布式集群原理

在app/config/database.php中配置如下: 'redis' => array('cluster' => true,'default' => array('host' => '172.21.107.247','port' => 6379,),'redis1' => array('host' => '172.21.107.248','port' => 6379,),) 其中cl

Redis的rehash机制

在Redis中,键值对(Key-Value Pair)存储方式是由字典(Dict)保存的,而字典底层是通过哈希表来实现的。通过哈希表中的节点保存字典中的键值对。我们知道当HashMap中由于Hash冲突(负载因子)超过某个阈值时,出于链表性能的考虑,会进行Resize的操作。Redis也一样。 在redis的具体实现中,使用了一种叫做渐进式哈希(rehashing)的机制来提高字典的缩放效率,避

【吊打面试官系列-Redis面试题】说说 Redis 哈希槽的概念?

大家好,我是锋哥。今天分享关于 【说说 Redis 哈希槽的概念?】面试题,希望对大家有帮助; 说说 Redis 哈希槽的概念? Redis 集群没有使用一致性 hash,而是引入了哈希槽的概念,Redis 集群有 16384 个哈希槽,每个 key 通过 CRC16 校验后对 16384 取模来决定放置哪个槽, 集群的每个节点负责一部分 hash 槽。

Redis地理数据类型GEO

通常要计算两个地理位置的距离不是很方便,这里可以直接通过Redis提供的GEO操作来完成地理位置相关的计算 1)添加地理位置 语法:geoadd key longitude latitude member [longitude latitude member] ...字段说明:key:存放地理位置的集合名称longitude:地理坐标的经度latitude:地理坐标的纬度member:表示这

Redis-主从集群

主从架构 单节点Redis的并发能力是有上限的,要进一步提高Redis的并发能力,就需要搭建主从集群,实现读写分离。 主从数据同步原理 全量同步 主从第一次建立连接时,会执行全量同步,将master节点的所有数据都拷贝给slave节点,流程: 判断是否是第一次同步,如果是,返回版本信息(replication id 和offset),将salve节点的版本信息变为master的

Redis安装使用总结

一、下载安装 从 github 下载:https://github.com/MSOpenTech/redis/releases 或者 https://github.com/ServiceStack/redis-windows 解压缩,如图: 二、配置 打开redis.windows-sevice.conf文件, 2.1 绑定ip:搜索127.0.0.1 ,发现bind 127.0.0.

面对Redis数据量庞大时的应对策略

面对Redis数据量庞大时的应对策略,我们可以从多个维度出发,包括数据分片、内存优化、持久化策略、使用集群、硬件升级、数据淘汰策略、以及数据结构选择等。以下是对这些策略的详细探讨: 一、数据分片(Sharding) 当Redis数据量持续增长,单个实例的处理能力可能达到瓶颈。此时,可以通过数据分片将数据分散存储到多个Redis实例中,以实现水平扩展。分片的主要策略包括: 一致性哈希:使用一