POJ - 1062( dijkstra+枚举)

2024-01-03 12:38
文章标签 poj 枚举 dijkstra 1062

本文主要是介绍POJ - 1062( dijkstra+枚举),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

昂贵的聘礼

年轻的探险家来到了一个印第安部落里。在那里他和酋长的女儿相爱了,于是便向酋长去求亲。酋长要他用10000个金币作为聘礼才答应把女儿嫁给他。探险家拿不出这么多金币,便请求酋长降低要求。酋长说:”嗯,如果你能够替我弄到大祭司的皮袄,我可以只要8000金币。如果你能够弄来他的水晶球,那么只要5000金币就行了。”探险家就跑到大祭司那里,向他要求皮袄或水晶球,大祭司要他用金币来换,或者替他弄来其他的东西,他可以降低价格。探险家于是又跑到其他地方,其他人也提出了类似的要求,或者直接用金币换,或者找到其他东西就可以降低价格。不过探险家没必要用多样东西去换一样东西,因为不会得到更低的价格。探险家现在很需要你的帮忙,让他用最少的金币娶到自己的心上人。另外他要告诉你的是,在这个部落里,等级观念十分森严。地位差距超过一定限制的两个人之间不会进行任何形式的直接接触,包括交易。他是一个外来人,所以可以不受这些限制。但是如果他和某个地位较低的人进行了交易,地位较高的的人不会再和他交易,他们认为这样等于是间接接触,反过来也一样。因此你需要在考虑所有的情况以后给他提供一个最好的方案。
为了方便起见,我们把所有的物品从1开始进行编号,酋长的允诺也看作一个物品,并且编号总是1。每个物品都有对应的价格P,主人的地位等级L,以及一系列的替代品Ti和该替代品所对应的”优惠”Vi。如果两人地位等级差距超过了M,就不能”间接交易”。你必须根据这些数据来计算出探险家最少需要多少金币才能娶到酋长的女儿。

Input

输入第一行是两个整数M,N(1 <= N <= 100),依次表示地位等级差距限制和物品的总数。接下来按照编号从小到大依次给出了N个物品的描述。每个物品的描述开头是三个非负整数P、L、X(X < N),依次表示该物品的价格、主人的地位等级和替代品总数。接下来X行每行包括两个整数T和V,分别表示替代品的编号和”优惠价格”。

Output

输出最少需要的金币数。

Sample Input

1 4
10000 3 2
2 8000
3 5000
1000 2 1
4 200
3000 2 1
4 200
50 2 0

Sample Output

5250

题意:中文题意emmmm……(ps:理解了半天题意…)。—->(简约版题意(⊙v⊙)):有n个人,按1-n表示。他们都有一个地位level。地位不超过m的人可以之间可以交易(两两之间)。每个交易要么直接付金币要么拿东西当做优惠。问可以付给1最少金币是多少

思路:一定会和1交易,所以按照1的level来枚举地位的区间如(1的地位为3,m为2,则[1,3],[2,4],[3,5],这样他们两两之间地位差距都不会超过m)。再求最短路,最后加上交易过程中最后那个不用优惠所需要的金币(从最后一个拿东西也是要钱的),取dis[1-n]最小值即为该区间的最小值

#include <iostream>
#include <fstream>
#include <cstdio>
#include <cstring>
#include <queue>
#include <stack>
#include <vector>
#include <map>
#include <cmath>
#include <algorithm>
#include <functional>
#define inf 0X3f3f3f3f
using namespace std;
typedef long long ll;
const int MAXN=1e4+10;
const int MAX=1000+10;int n,m;
int first[MAX],num;
int dis[MAX],vis[MAX];
int level[MAX],val[MAX];
int book[MAX];
struct EDGE{int v,w,far;int next;
}edge[MAXN];void init(){num=0;memset(first,-1,sizeof(first));}void addedge(int u,int v,int w){edge[num].v=v;edge[num].w=w;edge[num].next=first[u];first[u]=num++; 
}int dijkstra(int s){memset(vis,0,sizeof(vis));fill(dis,dis+n+1,inf);  dis[s]=0;vis[s]=0;for(int k=1;k<=n;k++){int minn=inf,t;for(int i=1;i<=n;i++){if(!vis[i]&&minn>dis[i]&&book[i]){minn=dis[i];t=i;}}vis[t]=1;for(int i=first[t];i!=-1;i=edge[i].next){int v=edge[i].v;int w=edge[i].w;if(dis[v]>dis[t]+w&&book[v]){dis[v]=dis[t]+w;}}}int res=inf;for(int i=1;i<=n;i++){dis[i]+=val[i];         //枚举最后到达的点,加上不用东西交换所需的金币res=min(res,dis[i]);    //取最小值,即为当前区间答案}//cout<<res<<endl;return res;
}int main(){#ifdef ONLINE_JUDGE#elsefreopen("in.txt","r",stdin);//freopen("out.txt","w",stdout);#endifcin>>m>>n;init();for(int i=1;i<=n;i++){int x;scanf("%d%d%d",&val[i],&level[i],&x);for(int j=1;j<=x;j++){int v,w;scanf("%d%d",&v,&w);addedge(i,v,w);}}int ans=inf;for(int i=0;i<=m;i++){      //枚举可交易范围memset(book,0,sizeof(book));for(int j=1;j<=n;j++){if(level[j]>=level[1]-m+i&&level[j]<=level[1]+i)book[j]=1;}ans=min(ans,dijkstra(1));}cout<<ans<<endl;return 0;
}

这篇关于POJ - 1062( dijkstra+枚举)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/565715

相关文章

poj 3974 and hdu 3068 最长回文串的O(n)解法(Manacher算法)

求一段字符串中的最长回文串。 因为数据量比较大,用原来的O(n^2)会爆。 小白上的O(n^2)解法代码:TLE啦~ #include<stdio.h>#include<string.h>const int Maxn = 1000000;char s[Maxn];int main(){char e[] = {"END"};while(scanf("%s", s) != EO

hdu 2602 and poj 3624(01背包)

01背包的模板题。 hdu2602代码: #include<stdio.h>#include<string.h>const int MaxN = 1001;int max(int a, int b){return a > b ? a : b;}int w[MaxN];int v[MaxN];int dp[MaxN];int main(){int T;int N, V;s

poj 1511 Invitation Cards(spfa最短路)

题意是给你点与点之间的距离,求来回到点1的最短路中的边权和。 因为边很大,不能用原来的dijkstra什么的,所以用spfa来做。并且注意要用long long int 来存储。 稍微改了一下学长的模板。 stack stl 实现代码: #include<stdio.h>#include<stack>using namespace std;const int M

poj 3259 uva 558 Wormholes(bellman最短路负权回路判断)

poj 3259: 题意:John的农场里n块地,m条路连接两块地,w个虫洞,虫洞是一条单向路,不但会把你传送到目的地,而且时间会倒退Ts。 任务是求你会不会在从某块地出发后又回来,看到了离开之前的自己。 判断树中是否存在负权回路就ok了。 bellman代码: #include<stdio.h>const int MaxN = 501;//农场数const int

poj 1258 Agri-Net(最小生成树模板代码)

感觉用这题来当模板更适合。 题意就是给你邻接矩阵求最小生成树啦。~ prim代码:效率很高。172k...0ms。 #include<stdio.h>#include<algorithm>using namespace std;const int MaxN = 101;const int INF = 0x3f3f3f3f;int g[MaxN][MaxN];int n

poj 1287 Networking(prim or kruscal最小生成树)

题意给你点与点间距离,求最小生成树。 注意点是,两点之间可能有不同的路,输入的时候选择最小的,和之前有道最短路WA的题目类似。 prim代码: #include<stdio.h>const int MaxN = 51;const int INF = 0x3f3f3f3f;int g[MaxN][MaxN];int P;int prim(){bool vis[MaxN];

poj 2349 Arctic Network uva 10369(prim or kruscal最小生成树)

题目很麻烦,因为不熟悉最小生成树的算法调试了好久。 感觉网上的题目解释都没说得很清楚,不适合新手。自己写一个。 题意:给你点的坐标,然后两点间可以有两种方式来通信:第一种是卫星通信,第二种是无线电通信。 卫星通信:任何两个有卫星频道的点间都可以直接建立连接,与点间的距离无关; 无线电通信:两个点之间的距离不能超过D,无线电收发器的功率越大,D越大,越昂贵。 计算无线电收发器D

poj 1502 MPI Maelstrom(单源最短路dijkstra)

题目真是长得头疼,好多生词,给跪。 没啥好说的,英语大水逼。 借助字典尝试翻译了一下,水逼直译求不喷 Description: BIT他们的超级计算机最近交货了。(定语秀了一堆词汇那就省略吧再见) Valentine McKee的研究顾问Jack Swigert,要她来测试一下这个系统。 Valentine告诉Swigert:“因为阿波罗是一个分布式共享内存的机器,所以它的内存访问

uva 10061 How many zero's and how many digits ?(不同进制阶乘末尾几个0)+poj 1401

题意是求在base进制下的 n!的结果有几位数,末尾有几个0。 想起刚开始的时候做的一道10进制下的n阶乘末尾有几个零,以及之前有做过的一道n阶乘的位数。 当时都是在10进制下的。 10进制下的做法是: 1. n阶位数:直接 lg(n!)就是得数的位数。 2. n阶末尾0的个数:由于2 * 5 将会在得数中以0的形式存在,所以计算2或者计算5,由于因子中出现5必然出现2,所以直接一

uva 10801(乘电梯dijkstra)

题意: 给几个电梯,电梯0 ~ n-1分别可以到达很多层楼。 换乘电梯需要60s时间。 问从0层到target层最小的时间。 解析: 将进入第0层的电梯60s也算上,最后减。 坑点是如果target为0输出0。 代码: #include <iostream>#include <cstdio>#include <cstdlib>#include <algori