避开Python列表处理的雷区(三):从新手到专家的必看指南

2024-01-03 03:04

本文主要是介绍避开Python列表处理的雷区(三):从新手到专家的必看指南,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

引言

Python列表是Python中最基础的数据结构之一,也是我们日常编程中经常使用的一种数据类型。然而,在进行列表处理时,许多新手和资深开发者都容易陷入一些常见的陷阱和误区。这些“雷区”不仅可能导致程序出错,还可能影响程序的性能。本文旨在帮助读者从新手到专家进一步了解Python列表处理中的常见问题,并提供行之有效的解决方案,帮助读者更有效地进行Python编程。

"in"关键字的性能陷阱

在Python编程中,in关键字是一个非常常用的操作符,用于检查一个元素是否存在于序列中。然而,许多开发者可能没有意识到,在某些情况下,in关键字的性能可能成为问题。本文将深入探讨in关键字在Python中的性能陷阱,并提出相应的解决方案。

大型数据集的查询效率问题

当使用"in"关键字查询大型数据集时,性能可能会显著下降。例如,对于一个包含数百万个元素的列表,使用"in"关键字来查找一个元素可能需要线性时间复杂度O(n),导致查询效率低下。此时,可以通过优化数据结构来提高查询效率。例如,使用集合(set)代替列表(list),因为集合支持O(1)时间复杂度的查询。下面是一个示例代码:

import time
import matplotlib.pyplot as plt# 定义一个用于存储时间结果的列表
time_results = []# 遍历列表长度从1e5到1e8
for list_len in [int(1e5), int(1e6), int(1e7), int(1e8)]:# 创建一个长度为list_len的列表my_list = list(range(list_len))# 记录开始时间start_time = time.time()# 检查1e8是否在列表中,并在控制台输出"Found!"if int(1e8) in my_list:print("Found!")# 记录结束时间,并计算时间差end_time = time.time()time_results.append(end_time - start_time)# 定义另一个用于存储时间结果的列表
time_results1 = []# 遍历集合长度从1e5到1e8
for list_len in [int(1e5), int(1e6), int(1e7), int(1e8)]:# 创建一个长度为list_len的集合my_set = set(list(range(list_len)))# 记录开始时间start_time = time.time()# 检查1e8是否在集合中,并在控制台输出"Found!"if int(1e8) in my_set:print("Found!")# 记录结束时间,并计算时间差end_time = time.time()time_results1.append(end_time - start_time)# 使用matplotlib绘制列表和集合的时间性能曲线图
plt.plot([int(1e5), int(1e6), int(1e7), int(1e8)], time_results, 'r-', label=u'List')
plt.plot([int(1e5), int(1e6), int(1e7), int(1e8)], time_results1, 'b-', label=u'Set')
plt.xlabel("number of elements")  # x轴标签为元素数量
plt.ylabel("Time/s")  # y轴标签为时间(秒)
plt.xlim([int(1e5), int(1e8)])  # 设置x轴的范围从1e5到1e8
plt.legend()
plt.show()  # 显示图形

运行结果如下:

图1 运行结果

从上述代码中,我们可以观察到列表和集合在处理元素查询时的性能差异。通过使用两个循环,分别对列表和集合进行了同样的操作:在特定的长度下,检查一个特定的元素(这里是1e8)是否存在于该数据结构中。每次操作的时间差被记录并存储在两个不同的列表中:time_results和time_results1。

然后,使用matplotlib库绘制了这两个列表的图形,以直观地展示列表和集合在处理查询时的性能。

结果分析

  1. 时间性能:从图形中我们可以明显看到,随着数据结构的元素数量的增加,查询时间也在增加。然而,对于同样的元素数量,列表的查询时间明显高于集合的查询时间。这说明在处理查询操作时,集合的性能优于列表。
  2. 适用场景:根据实际应用的需求,我们可以选择使用列表或集合。如果需要快速查询元素是否存在,并且不关心元素的顺序或重复性,那么集合是一个更好的选择。如果需要保持元素的顺序或需要存储重复的元素,那么列表可能更合适。

总结经验

  1. 选择合适的数据结构:了解不同数据结构的特性和适用场景是至关重要的。在处理查询操作时,集合通常比列表更高效。

相关链接

标题链接
Python列表数据处理全攻略(一):常用内置方法轻松掌握https://blog.csdn.net/qq_41813454/article/details/135167251?spm=1001.2014.3001.5501
Python列表数据处理全攻略(二):常用内置方法轻松掌握https://blog.csdn.net/qq_41813454/article/details/135265422?spm=1001.2014.3001.5501
Python列表数据处理全攻略(三):常用内置方法轻松掌握https://blog.csdn.net/qq_41813454/article/details/135279404?spm=1001.2014.3001.5501
Python列表数据处理全攻略(四):常用内置方法轻松掌握https://blog.csdn.net/qq_41813454/article/details/135300076?spm=1001.2014.3001.5501
Python列表数据处理全攻略(五):常用内置方法轻松掌握https://blog.csdn.net/qq_41813454/article/details/135315219?spm=1001.2014.3001.5501
Python列表数据处理全攻略(六):常用内置方法轻松掌握https://blog.csdn.net/qq_41813454/article/details/135315776?spm=1001.2014.3001.5501
Python列表数据处理全攻略(七):常用内置方法轻松掌握https://blog.csdn.net/qq_41813454/article/details/135339046?spm=1001.2014.3001.5501
避开Python列表处理的雷区(一):从新手到专家的必看指南https://blog.csdn.net/qq_41813454/article/details/135300506?spm=1001.2014.3001.5501
避开Python列表处理的雷区(二):从新手到专家的必看指南https://blog.csdn.net/qq_41813454/article/details/135307873?spm=1001.2014.3001.5501

结尾

亲爱的读者,首先感谢抽出宝贵的时间来阅读我们的博客。我们真诚地欢迎您留下评论和意见,因为这对我们来说意义非凡。
俗话说,当局者迷,旁观者清。的客观视角对于我们发现博文的不足、提升内容质量起着不可替代的作用。
如果您觉得我们的博文给您带来了启发,那么,希望能为我们点个免费的赞/关注您的支持和鼓励是我们持续创作的动力
请放心,我们会持续努力创作,并不断优化博文质量,只为给带来更佳的阅读体验。
再次感谢的阅读,愿我们共同成长,共享智慧的果实!

这篇关于避开Python列表处理的雷区(三):从新手到专家的必看指南的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/564396

相关文章

Python将博客内容html导出为Markdown格式

《Python将博客内容html导出为Markdown格式》Python将博客内容html导出为Markdown格式,通过博客url地址抓取文章,分析并提取出文章标题和内容,将内容构建成html,再转... 目录一、为什么要搞?二、准备如何搞?三、说搞咱就搞!抓取文章提取内容构建html转存markdown

Python获取中国节假日数据记录入JSON文件

《Python获取中国节假日数据记录入JSON文件》项目系统内置的日历应用为了提升用户体验,特别设置了在调休日期显示“休”的UI图标功能,那么问题是这些调休数据从哪里来呢?我尝试一种更为智能的方法:P... 目录节假日数据获取存入jsON文件节假日数据读取封装完整代码项目系统内置的日历应用为了提升用户体验,

在React中引入Tailwind CSS的完整指南

《在React中引入TailwindCSS的完整指南》在现代前端开发中,使用UI库可以显著提高开发效率,TailwindCSS是一个功能类优先的CSS框架,本文将详细介绍如何在Reac... 目录前言一、Tailwind css 简介二、创建 React 项目使用 Create React App 创建项目

SpringBoot3实现Gzip压缩优化的技术指南

《SpringBoot3实现Gzip压缩优化的技术指南》随着Web应用的用户量和数据量增加,网络带宽和页面加载速度逐渐成为瓶颈,为了减少数据传输量,提高用户体验,我们可以使用Gzip压缩HTTP响应,... 目录1、简述2、配置2.1 添加依赖2.2 配置 Gzip 压缩3、服务端应用4、前端应用4.1 N

Python FastAPI+Celery+RabbitMQ实现分布式图片水印处理系统

《PythonFastAPI+Celery+RabbitMQ实现分布式图片水印处理系统》这篇文章主要为大家详细介绍了PythonFastAPI如何结合Celery以及RabbitMQ实现简单的分布式... 实现思路FastAPI 服务器Celery 任务队列RabbitMQ 作为消息代理定时任务处理完整

使用Jackson进行JSON生成与解析的新手指南

《使用Jackson进行JSON生成与解析的新手指南》这篇文章主要为大家详细介绍了如何使用Jackson进行JSON生成与解析处理,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1. 核心依赖2. 基础用法2.1 对象转 jsON(序列化)2.2 JSON 转对象(反序列化)3.

Python Websockets库的使用指南

《PythonWebsockets库的使用指南》pythonwebsockets库是一个用于创建WebSocket服务器和客户端的Python库,它提供了一种简单的方式来实现实时通信,支持异步和同步... 目录一、WebSocket 简介二、python 的 websockets 库安装三、完整代码示例1.

揭秘Python Socket网络编程的7种硬核用法

《揭秘PythonSocket网络编程的7种硬核用法》Socket不仅能做聊天室,还能干一大堆硬核操作,这篇文章就带大家看看Python网络编程的7种超实用玩法,感兴趣的小伙伴可以跟随小编一起... 目录1.端口扫描器:探测开放端口2.简易 HTTP 服务器:10 秒搭个网页3.局域网游戏:多人联机对战4.

使用Python实现快速搭建本地HTTP服务器

《使用Python实现快速搭建本地HTTP服务器》:本文主要介绍如何使用Python快速搭建本地HTTP服务器,轻松实现一键HTTP文件共享,同时结合二维码技术,让访问更简单,感兴趣的小伙伴可以了... 目录1. 概述2. 快速搭建 HTTP 文件共享服务2.1 核心思路2.2 代码实现2.3 代码解读3.

C#使用SQLite进行大数据量高效处理的代码示例

《C#使用SQLite进行大数据量高效处理的代码示例》在软件开发中,高效处理大数据量是一个常见且具有挑战性的任务,SQLite因其零配置、嵌入式、跨平台的特性,成为许多开发者的首选数据库,本文将深入探... 目录前言准备工作数据实体核心技术批量插入:从乌龟到猎豹的蜕变分页查询:加载百万数据异步处理:拒绝界面