IGAL九期班学习笔记-曹楠

2024-01-03 02:20
文章标签 学习 笔记 九期 igal 曹楠

本文主要是介绍IGAL九期班学习笔记-曹楠,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

     本篇博客用于记录本人听取IGAL九期班曹楠老师报告的学习记录。曹楠老师的报告主要讲述的是《可视化在医疗信息上的应用》(Visualization in Health Informatics)。在2011年的美国国家医学报告中指出:相比其他技术的发展,可视化在医疗领域的发展尤为落后。传统的医疗可视化的应用有X-Ray、CT、模拟手术(VR和AR)等,但可视化在医疗领域存在缺失,如电子病历、看一个人的精神是否正常可以通过他的社交信息来分析等,一些医疗领域的信息在可视化上没有很好的应用。进而,曹老师提到了由美国率先提出的具有跨时代意义Health 2.0的概念,从而进入本次课程的主题。

         Health 2.0就是通过采集一个人的社交相关的数据、移动设备的数据、个人传感器的数据等与他健康所有相关的数据来帮助医生做辅助诊疗,帮助医生做医学上的判断,继而这些收集到的数据全部都可以用来做可视化,可视化的母的是帮助医生或帮助患者自身来判断他自身的情况。数据可视化如何在医疗2.0上应用可分为三个层面:

  1. 显示个人健康信息:如每天走了多少步、心跳次数是多少、血压值是多少等类似的个人信息。
  2. 显示临床健康信息:如用户看过什么病,看病后吃过什么药等信息
  3. 显示公共卫生信息:比如疾病是怎样的扩散的、怎样从一个地方扩散到另一个地方,起到一种信息汇总的作用。

针对这三个层面,曹楠老师在报告中主要讲解了第二个层面,少量涉及了第一和第三个层面。

一、展现用户的个体健康信息

对于用的个体信息展现一般都是给用户看的,这样的可视化图形要求简单明了和易懂。Patientslikeme 网站可以分享自己个人的生病信息数据,然后网站可以在信息库里用图表示和你有相同症状的病人信息及过程。

患者档案-用户输入的所有数据将以一种在一系列图表中显示其总体健康历史记录的方式反映回来。理想情况下,它会照亮事情进展顺利的地方以及原因。

同时将这些数据有偿的卖给医院和药厂分析。

二、展现电子病历数据的可视化

包括所有的文本信息、化验报告、拍片报告等任何在医院里收集的信息

这些数据分析上的问题

1、没有统计的规范及标准

2、数据多样性的异构数据

由于每个病历中不变的是时间,所以常见的电子病历信息会根据时间被建模成事件序列数据(由一个事件组成的时间序列数据)

出现的问题:时间长、数据量巨大

三个问题

1、怎样得到的模式:

  1. 疾病的发展的规律
  2. 诊疗方案所带来的结果

Event Flow事件流

由于该方法存在展现不清晰,数据流较大时难以辨认,于是曹楠老师与同事在此基础上做了改进的研究:

Care Flow

使用了桑基图,左侧板仍然代表一组病人,带的宽度代表病人的数量,线的连接代表有多少个人从上个阶段跳转到下一个阶段,根据下一阶段的状况把病人分成了若干组,接下来又根据每一组的不同状况继续往下分,最后绿色代表康复,红色代表死亡。

Decision Flow

由于不同的病人的Event Sequence的长度是不同的、同时发生事件的顺序和规律也是不一样的。如有些人是直接从A事件到达B事件,然而有些人的情况较为复杂会通过A事件到C事件再到达D事件然后再到达B事件,虽然符合同样的模式但过程不同。 为了把其中的小的事件过滤掉,曹老师又做了以下工作:

选取一些最关键的事件如M0和M1,同时还可以选择一些其他的事件如M2,,把直接从M0到M1的事件划为绿色的事件,高度代表病人数量d,代表平均经历的天

这个可视化存在的细节:丢失了细节信息,进而提出了EventThread V1.0通过无监督式学习的方法去做Summarization(概要)

每根线表示一个诊疗方案,事件通过圆形的点来表示,同时将诊疗方案切割成了若干个阶段,然后可以看到在每个阶段发生的信息。

研究过程:

  1. 找到最常见最关键的事件提取出来,把一些不关键的自动分析出来并且提出掉。(使用TF-IDF)
  2. 把事件序列进行对其(左对齐)
  3. 去切分他的阶段,阶段的信息由人为来切割
  4. Tensor Analysis

  2、怎样做预测:预测下一个事件的概率由多大

相关工作:

1、研究并开发了一个为患者做预测的系统

使用可解释性的深度学习模型来做预测,并且通过可视化增强模型的可信度

2、心电图的预测分析

由于心点图的数据量的巨大,一秒十二次,使得这样的数据医生无法去读完,故此曹老师的研究通过深度学习的方法,将有问题的心电图从大量的数据中摘出来,然后用可视化的方法展现出来,让医生更好的去标记有问题的心电图的片段。

3、怎样分析因果关系分析,如吃药以后康复,想要知道到底是什么因素使得他康复,是因为某种药还是其他。

参考文献:IGAL九期班视频:day2-morning-caonan_Trim 及PPT:IGAL09-CaoNan

这篇关于IGAL九期班学习笔记-曹楠的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/564303

相关文章

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

【前端学习】AntV G6-08 深入图形与图形分组、自定义节点、节点动画(下)

【课程链接】 AntV G6:深入图形与图形分组、自定义节点、节点动画(下)_哔哩哔哩_bilibili 本章十吾老师讲解了一个复杂的自定义节点中,应该怎样去计算和绘制图形,如何给一个图形制作不间断的动画,以及在鼠标事件之后产生动画。(有点难,需要好好理解) <!DOCTYPE html><html><head><meta charset="UTF-8"><title>06

学习hash总结

2014/1/29/   最近刚开始学hash,名字很陌生,但是hash的思想却很熟悉,以前早就做过此类的题,但是不知道这就是hash思想而已,说白了hash就是一个映射,往往灵活利用数组的下标来实现算法,hash的作用:1、判重;2、统计次数;

零基础学习Redis(10) -- zset类型命令使用

zset是有序集合,内部除了存储元素外,还会存储一个score,存储在zset中的元素会按照score的大小升序排列,不同元素的score可以重复,score相同的元素会按照元素的字典序排列。 1. zset常用命令 1.1 zadd  zadd key [NX | XX] [GT | LT]   [CH] [INCR] score member [score member ...]

【机器学习】高斯过程的基本概念和应用领域以及在python中的实例

引言 高斯过程(Gaussian Process,简称GP)是一种概率模型,用于描述一组随机变量的联合概率分布,其中任何一个有限维度的子集都具有高斯分布 文章目录 引言一、高斯过程1.1 基本定义1.1.1 随机过程1.1.2 高斯分布 1.2 高斯过程的特性1.2.1 联合高斯性1.2.2 均值函数1.2.3 协方差函数(或核函数) 1.3 核函数1.4 高斯过程回归(Gauss

【学习笔记】 陈强-机器学习-Python-Ch15 人工神经网络(1)sklearn

系列文章目录 监督学习:参数方法 【学习笔记】 陈强-机器学习-Python-Ch4 线性回归 【学习笔记】 陈强-机器学习-Python-Ch5 逻辑回归 【课后题练习】 陈强-机器学习-Python-Ch5 逻辑回归(SAheart.csv) 【学习笔记】 陈强-机器学习-Python-Ch6 多项逻辑回归 【学习笔记 及 课后题练习】 陈强-机器学习-Python-Ch7 判别分析 【学

系统架构师考试学习笔记第三篇——架构设计高级知识(20)通信系统架构设计理论与实践

本章知识考点:         第20课时主要学习通信系统架构设计的理论和工作中的实践。根据新版考试大纲,本课时知识点会涉及案例分析题(25分),而在历年考试中,案例题对该部分内容的考查并不多,虽在综合知识选择题目中经常考查,但分值也不高。本课时内容侧重于对知识点的记忆和理解,按照以往的出题规律,通信系统架构设计基础知识点多来源于教材内的基础网络设备、网络架构和教材外最新时事热点技术。本课时知识

线性代数|机器学习-P36在图中找聚类

文章目录 1. 常见图结构2. 谱聚类 感觉后面几节课的内容跨越太大,需要补充太多的知识点,教授讲得内容跨越较大,一般一节课的内容是书本上的一章节内容,所以看视频比较吃力,需要先预习课本内容后才能够很好的理解教授讲解的知识点。 1. 常见图结构 假设我们有如下图结构: Adjacency Matrix:行和列表示的是节点的位置,A[i,j]表示的第 i 个节点和第 j 个

Node.js学习记录(二)

目录 一、express 1、初识express 2、安装express 3、创建并启动web服务器 4、监听 GET&POST 请求、响应内容给客户端 5、获取URL中携带的查询参数 6、获取URL中动态参数 7、静态资源托管 二、工具nodemon 三、express路由 1、express中路由 2、路由的匹配 3、路由模块化 4、路由模块添加前缀 四、中间件