本文主要是介绍【C++】基于C++11的线程池:threadpool,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
1、参考
作者博客:https://www.cnblogs.com/lzpong/p/6397997.html
源码:https://github.com/lzpong/threadpool
2、源码
原理:利用生产者-消费者模型,管理一个任务队列,一个线程队列,然后每次取一个任务分配给一个线程去做,循环往复。
#pragma once
#ifndef THREAD_POOL_H
#define THREAD_POOL_H#include <vector>
#include <queue>
#include <atomic>
#include <future>
#include <stdexcept>namespace std
{
//线程池最大容量,应尽量设小一点
#define THREADPOOL_MAX_NUM 16
//线程池是否可以自动增长(如果需要,且不超过 THREADPOOL_MAX_NUM)
//#define THREADPOOL_AUTO_GROW//线程池,可以提交变参函数或拉姆达表达式的匿名函数执行,可以获取执行返回值
//不直接支持类成员函数, 支持类静态成员函数或全局函数,Opteron()函数等
class threadpool
{unsigned short _initSize; //初始化线程数量using Task = function<void()>; //定义类型vector<thread> _pool; //线程池queue<Task> _tasks; //任务队列mutex _lock; //任务队列同步锁
#ifdef THREADPOOL_AUTO_GROWmutex _lockGrow; //线程池增长同步锁
#endif // !THREADPOOL_AUTO_GROWcondition_variable _task_cv; //条件阻塞atomic<bool> _run{ true }; //线程池是否执行atomic<int> _idlThrNum{ 0 }; //空闲线程数量public:inline threadpool(unsigned short size = 4) { _initSize = size; addThread(size); }inline ~threadpool(){_run=false;_task_cv.notify_all(); // 唤醒所有线程执行for (thread& thread : _pool) {//thread.detach(); // 让线程“自生自灭”if (thread.joinable())thread.join(); // 等待任务结束, 前提:线程一定会执行完}}public:// 提交一个任务// 调用.get()获取返回值会等待任务执行完,获取返回值// 有两种方法可以实现调用类成员,// 一种是使用 bind: .commit(std::bind(&Dog::sayHello, &dog));// 一种是用 mem_fn: .commit(std::mem_fn(&Dog::sayHello), this)template<class F, class... Args>auto commit(F&& f, Args&&... args) -> future<decltype(f(args...))>{if (!_run) // stoped ??throw runtime_error("commit on ThreadPool is stopped.");using RetType = decltype(f(args...)); // typename std::result_of<F(Args...)>::type, 函数 f 的返回值类型auto task = make_shared<packaged_task<RetType()>>(bind(forward<F>(f), forward<Args>(args)...)); // 把函数入口及参数,打包(绑定)future<RetType> future = task->get_future();{ // 添加任务到队列lock_guard<mutex> lock{ _lock };//对当前块的语句加锁 lock_guard 是 mutex 的 stack 封装类,构造的时候 lock(),析构的时候 unlock()_tasks.emplace([task]() { // push(Task{...}) 放到队列后面(*task)();});}
#ifdef THREADPOOL_AUTO_GROWif (_idlThrNum < 1 && _pool.size() < THREADPOOL_MAX_NUM)addThread(1);
#endif // !THREADPOOL_AUTO_GROW_task_cv.notify_one(); // 唤醒一个线程执行return future;}// 提交一个无参任务, 且无返回值template <class F>void commit2(F&& task){if (!_run) return;{lock_guard<mutex> lock{ _lock };_tasks.emplace(std::forward<F>(task));}
#ifdef THREADPOOL_AUTO_GROWif (_idlThrNum < 1 && _pool.size() < THREADPOOL_MAX_NUM)addThread(1);
#endif // !THREADPOOL_AUTO_GROW_task_cv.notify_one();}//空闲线程数量int idlCount() { return _idlThrNum; }//线程数量int thrCount() { return _pool.size(); }#ifndef THREADPOOL_AUTO_GROW
private:
#endif // !THREADPOOL_AUTO_GROW//添加指定数量的线程void addThread(unsigned short size){
#ifdef THREADPOOL_AUTO_GROWif (!_run) // stoped ??throw runtime_error("Grow on ThreadPool is stopped.");unique_lock<mutex> lockGrow{ _lockGrow }; //自动增长锁
#endif // !THREADPOOL_AUTO_GROWfor (; _pool.size() < THREADPOOL_MAX_NUM && size > 0; --size){ //增加线程数量,但不超过 预定义数量 THREADPOOL_MAX_NUM_pool.emplace_back( [this]{ //工作线程函数while (true) //防止 _run==false 时立即结束,此时任务队列可能不为空{Task task; // 获取一个待执行的 task{// unique_lock 相比 lock_guard 的好处是:可以随时 unlock() 和 lock()unique_lock<mutex> lock{ _lock };_task_cv.wait(lock, [this] { // wait 直到有 task, 或需要停止return !_run || !_tasks.empty();});if (!_run && _tasks.empty())return;_idlThrNum--;task = move(_tasks.front()); // 按先进先出从队列取一个 task_tasks.pop();}task();//执行任务
#ifdef THREADPOOL_AUTO_GROWif (_idlThrNum>0 && _pool.size() > _initSize) //支持自动释放空闲线程,避免峰值过后大量空闲线程return;
#endif // !THREADPOOL_AUTO_GROW{unique_lock<mutex> lock{ _lock };_idlThrNum++;}}});{unique_lock<mutex> lock{ _lock };_idlThrNum++;}}}
};
}
#endif //https://github.com/lzpong/
3、涉及的C++11的知识
1)using Task = function<void()> 是类型别名,简化了 typedef 的用法。function<void()> 可以认为是一个函数类型,接受任意原型是 void() 的函数,或是函数对象,或是匿名函数。void() 意思是不带参数,没有返回值。
2)pool.emplace_back([this]{…}) 和 pool.push_back([this]{…}) 功能一样,只不过前者性能会更好;
3)pool.emplace_back([this]{…}) 是构造了一个线程对象,执行函数是拉姆达匿名函数 ;
4)所有对象的初始化方式均采用了 {},而不再使用 () 方式,因为风格不够一致且容易出错;
5)匿名函数: [this]{…} 不多说。[] 是捕捉器,this 是引用域外的变量 this指针, 内部使用死循环, 由cv_task.wait(lock,[this]{…}) 来阻塞线程;
6)delctype(expr) 用来推断 expr 的类型,和 auto 是类似的,相当于类型占位符,占据一个类型的位置;auto f(A a, B b) -> decltype(a+b) 是一种用法,不能写作 decltype(a+b) f(A a, B b),为啥?! c++ 就是这么规定的!
7)commit 方法是不是略奇葩!可以带任意多的参数,第一个参数是 f,后面依次是函数 f 的参数(注意:参数要传struct/class的话,建议用pointer,小心变量的作用域)! 可变参数模板是 c++11 的一大亮点,够亮!至于为什么是 Arg… 和 arg… ,因为规定就是这么用的!
8)commit 直接使用智能调用stdcall函数,但有两种方法可以实现调用类成员,一种是使用 bind: .commit(std::bind(&Dog::sayHello, &dog)); 一种是用 mem_fn: .commit(std::mem_fn(&Dog::sayHello), &dog);
9)make_shared 用来构造 shared_ptr 智能指针。用法大体是 shared_ptr p = make_shared(4) 然后 *p == 4 。智能指针的好处就是, 自动 delete !
10)bind 函数,接受函数 f 和部分参数,返回currying后的匿名函数,譬如 bind(add, 4) 可以实现类似 add4 的函数!
11)forward() 函数,类似于 move() 函数,后者是将参数右值化,前者是… 肿么说呢?大概意思就是:不改变最初传入的类型的引用类型(左值还是左值,右值还是右值);
12)packaged_task 就是任务函数的封装类,通过 get_future 获取 future , 然后通过 future 可以获取函数的返回值(future.get());packaged_task 本身可以像函数一样调用 () ;
13)queue 是队列类, front() 获取头部元素, pop() 移除头部元素;back() 获取尾部元素,push() 尾部添加元素;
14)lock_guard 是 mutex 的 stack 封装类,构造的时候 lock(),析构的时候 unlock(),是 c++ RAII 的 idea;
15)condition_variable cv; 条件变量, 需要配合 unique_lock 使用;unique_lock 相比 lock_guard 的好处是:可以随时 unlock() 和 lock()。 cv.wait() 之前需要持有 mutex,wait 本身会 unlock() mutex,如果条件满足则会重新持有 mutex。
16)最后线程池析构的时候,join() 可以等待任务都执行完在结束,很安全!
4、使用demo
#include "threadpool.h"
#include <iostream>void fun1(int slp)
{printf(" hello, fun1 ! %d\n" ,std::this_thread::get_id());if (slp>0) {printf(" ======= fun1 sleep %d ========= %d\n",slp, std::this_thread::get_id());std::this_thread::sleep_for(std::chrono::milliseconds(slp));}
}struct gfun {int operator()(int n) {printf("%d hello, gfun ! %d\n" ,n, std::this_thread::get_id() );return 42;}
};class A {
public:static int Afun(int n = 0) { //函数必须是 static 的才能直接使用线程池std::cout << n << " hello, Afun ! " << std::this_thread::get_id() << std::endl;return n;}static std::string Bfun(int n, std::string str, char c) {std::cout << n << " hello, Bfun ! "<< str.c_str() <<" " << (int)c <<" " << std::this_thread::get_id() << std::endl;return str;}
};int main()try {std::threadpool executor{ 50 };A a;std::future<void> ff = executor.commit(fun1,0);std::future<int> fg = executor.commit(gfun{},0);std::future<int> gg = executor.commit(a.Afun, 9999); //IDE提示错误,但可以编译运行std::future<std::string> gh = executor.commit(A::Bfun, 9998,"mult args", 123);std::future<std::string> fh = executor.commit([]()->std::string { std::cout << "hello, fh ! " << std::this_thread::get_id() << std::endl; return "hello,fh ret !"; });std::cout << " ======= sleep ========= " << std::this_thread::get_id() << std::endl;std::this_thread::sleep_for(std::chrono::microseconds(900));for (int i = 0; i < 50; i++) {executor.commit(fun1,i*100 );}std::cout << " ======= commit all ========= " << std::this_thread::get_id()<< " idlsize="<<executor.idlCount() << std::endl;std::cout << " ======= sleep ========= " << std::this_thread::get_id() << std::endl;std::this_thread::sleep_for(std::chrono::seconds(3));ff.get(); //调用.get()获取返回值会等待线程执行完,获取返回值std::cout << fg.get() << " " << fh.get().c_str()<< " " << std::this_thread::get_id() << std::endl;std::cout << " ======= sleep ========= " << std::this_thread::get_id() << std::endl;std::this_thread::sleep_for(std::chrono::seconds(3));std::cout << " ======= fun1,55 ========= " << std::this_thread::get_id() << std::endl;executor.commit(fun1,55).get(); //调用.get()获取返回值会等待线程执行完std::cout << "end... " << std::this_thread::get_id() << std::endl;std::threadpool pool(4);std::vector< std::future<int> > results;for (int i = 0; i < 8; ++i) {results.emplace_back(pool.commit([i] {std::cout << "hello " << i << std::endl;std::this_thread::sleep_for(std::chrono::seconds(1));std::cout << "world " << i << std::endl;return i*i;}));}std::cout << " ======= commit all2 ========= " << std::this_thread::get_id() << std::endl;for (auto && result : results)std::cout << result.get() << ' ';std::cout << std::endl;return 0;}
catch (std::exception& e) {std::cout << "some unhappy happened... " << std::this_thread::get_id() << e.what() << std::endl;
}
这篇关于【C++】基于C++11的线程池:threadpool的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!