CodeForces 742B Arpa’s obvious problem and Mehrdad’s terrible solution

2024-01-02 13:08

本文主要是介绍CodeForces 742B Arpa’s obvious problem and Mehrdad’s terrible solution,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

B. Arpa’s obvious problem and Mehrdad’s terrible solution
time limit per test
1 second
memory limit per test
256 megabytes
input
standard input
output
standard output

There are some beautiful girls in Arpa’s land as mentioned before.

Once Arpa came up with an obvious problem:

Given an array and a number x, count the number of pairs of indices i, j (1 ≤ i < j ≤ n) such that , where is bitwise xor operation (see notes for explanation).

Immediately, Mehrdad discovered a terrible solution that nobody trusted. Now Arpa needs your help to implement the solution to that problem.

Input

First line contains two integers n and x (1 ≤ n ≤ 105, 0 ≤ x ≤ 105) — the number of elements in the array and the integer x.

Second line contains n integers a1, a2, ..., an (1 ≤ ai ≤ 105) — the elements of the array.

Output

Print a single integer: the answer to the problem.

Examples
Input
2 3
1 2
Output
1
Input
6 1
5 1 2 3 4 1
Output
2
Note

In the first sample there is only one pair of i = 1 and j = 2. so the answer is 1.

In the second sample the only two pairs are i = 3, j = 4 (since ) and i = 1, j = 5 (since ).

A bitwise xor takes two bit integers of equal length and performs the logical xor operation on each pair of corresponding bits. The result in each position is 1 if only the first bit is 1 or only the second bit is 1, but will be 0 if both are 0 or both are 1. You can read more about bitwise xor operation here: https://en.wikipedia.org/wiki/Bitwise_operation#XOR.


题目给出n个数,以及一个x,求那个数中有几对数可以异或为x;把每对数都异或一遍就T了;那么,怎么做呢?

异或运算有个性质:a^b=c->a^c=b->c^b=a;所以把n个数扫一遍就可以了;

代码如下:

#include <iostream>
#include <algorithm>
#include <string.h>using namespace std;long long a[100005];
long long b[200006];   //要开两倍,否则会WA;
int main(){long long n, x;long long cnt=0;cin >> n >> x;memset(b, 0, sizeof(b));for(int i=1; i<=n; i++){cin >> a[i];b[a[i]]++;}for(int i=1; i<=n; i++){long long c=x^a[i];cnt+=b[c];                //有几个c结果就加几;if(a[i]==c) cnt--;        //如果a[i]==c;就减去自身;}cout << cnt/2;                //每个数都与x异或一遍,如x=3时,1^2=3,2^1=3,但其实是一样的,每对数return 0;                     //都重复找了两遍,所以要/2;
}








这篇关于CodeForces 742B Arpa’s obvious problem and Mehrdad’s terrible solution的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/562529

相关文章

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个

uva 10025 The ? 1 ? 2 ? ... ? n = k problem(数学)

题意是    ?  1  ?  2  ?  ...  ?  n = k 式子中给k,? 处可以填 + 也可以填 - ,问最小满足条件的n。 e.g k = 12  - 1 + 2 + 3 + 4 + 5 + 6 - 7 = 12 with n = 7。 先给证明,令 S(n) = 1 + 2 + 3 + 4 + 5 + .... + n 暴搜n,搜出当 S(n) >=

Codeforces Round #240 (Div. 2) E分治算法探究1

Codeforces Round #240 (Div. 2) E  http://codeforces.com/contest/415/problem/E 2^n个数,每次操作将其分成2^q份,对于每一份内部的数进行翻转(逆序),每次操作完后输出操作后新序列的逆序对数。 图一:  划分子问题。 图二: 分而治之,=>  合并 。 图三: 回溯:

Codeforces Round #261 (Div. 2)小记

A  XX注意最后输出满足条件,我也不知道为什么写的这么长。 #define X first#define Y secondvector<pair<int , int> > a ;int can(pair<int , int> c){return -1000 <= c.X && c.X <= 1000&& -1000 <= c.Y && c.Y <= 1000 ;}int m

Codeforces Beta Round #47 C凸包 (最终写法)

题意慢慢看。 typedef long long LL ;int cmp(double x){if(fabs(x) < 1e-8) return 0 ;return x > 0 ? 1 : -1 ;}struct point{double x , y ;point(){}point(double _x , double _y):x(_x) , y(_y){}point op

Codeforces Round #113 (Div. 2) B 判断多边形是否在凸包内

题目点击打开链接 凸多边形A, 多边形B, 判断B是否严格在A内。  注意AB有重点 。  将A,B上的点合在一起求凸包,如果凸包上的点是B的某个点,则B肯定不在A内。 或者说B上的某点在凸包的边上则也说明B不严格在A里面。 这个处理有个巧妙的方法,只需在求凸包的时候, <=  改成< 也就是说凸包一条边上的所有点都重复点都记录在凸包里面了。 另外不能去重点。 int

Codeforces 482B 线段树

求是否存在这样的n个数; m次操作,每次操作就是三个数 l ,r,val          a[l] & a[l+1] &......&a[r] = val 就是区间l---r上的与的值为val 。 也就是意味着区间[L , R] 每个数要执行 | val 操作  最后判断  a[l] & a[l+1] &......&a[r] 是否= val import ja

AtCoder Beginner Contest 370 Solution

A void solve() {int a, b;qr(a, b);if(a + b != 1) cout << "Invalid\n";else Yes(a);} B 模拟 void solve() {qr(n);int x = 1;FOR(i, n) FOR(j, i) qr(a[i][j]);FOR(i, n) x = x >= i ? a[x][i]: a[i][x];pr2(

Codeforces Round 971 (Div. 4) (A~G1)

A、B题太简单,不做解释 C 对于 x y 两个方向,每一个方向至少需要 x / k 向上取整的步数,取最大值。 由于 x 方向先移动,假如 x 方向需要的步数多于 y 方向的步数,那么最后 y 方向的那一步就不需要了,答案减 1 代码 #include <iostream>#include <algorithm>#include <vector>#include <string>

Codeforces#295(Div.2)A、B(模拟+BFS)

解题报告链接:点击打开链接 C. 题目链接:点击打开链接 解题思路: 对于给定的字符串,取出现次数最多的字母(可以同时有多个)。由这些字母组成长度为n的字符串,求有多少种组合。最后用数学知识即可。 完整代码: #include <algorithm>#include <iostream>#include <cstring>#include <climits>