计算图与动态图机制

2024-01-02 08:28
文章标签 计算 机制 动态图

本文主要是介绍计算图与动态图机制,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、计算图

计算图是用来描述运算的有向无环图

计算图有两个主要元素:结点(Node)和边(Edge)

  • 结点表示数据,如向量,矩阵,张量
  • 边表示运算,如加减乘除卷积等

用计算图表示:

  • y = (x+ w) * (w+1)
  • a = x + w
  • b = w + 1
  • y = a * b

在这里插入图片描述

y = (x + w) * (w + 1)
a = x + w
b = w + 1
y = a * b
∂y/∂w = (∂y/∂a) * (∂a/∂w) + (∂y/∂b) * (∂b/∂w)= b * 1 + a * 1= b + a= (w + 1) + (x + w)= 2w + x + 1= 2 * 1 + 2 + 1= 5

在这里插入图片描述

计算图与梯度求导 y = (x+ w) * (w+1)

叶子结点:用户创建的结点称为叶子结点,如X 与 W

is_leaf: 指示张量是否为叶子结点

在这里插入图片描述
grad_fn: 记录创建该张量时所用的方法(函数)
y.grad_fn =
a.grad_fn =
b.grad_fn =

在这里插入图片描述
在这里插入图片描述

动态图

动态图vs 静态图

在这里插入图片描述

动态图 PyTorch

在这里插入图片描述

静态图 TensorFlow

在这里插入图片描述

在这里插入图片描述

import torch
w = torch.tensor([1.], requires_grad=True)  # 创建张量w,并设置requires_grad=True以计算梯度
x = torch.tensor([2.], requires_grad=True)  # 创建张量x,并设置requires_grad=True以计算梯度a = torch.add(w, x)     # 执行加法操作,计算w + x,得到张量a
b = torch.add(w, 1)     # 执行加法操作,计算w + 1,得到张量b
y = torch.mul(a, b)     # 执行乘法操作,计算a * b,得到张量yy.backward()            # 自动计算y对所有需要梯度的叶子结点的梯度
print(w.grad)           # 打印w的梯度# 查看叶子结点
# print("is_leaf:\n", w.is_leaf, x.is_leaf, a.is_leaf, b.is_leaf, y.is_leaf)# 查看梯度
# print("gradient:\n", w.grad, x.grad, a.grad, b.grad, y.grad)# 查看 grad_fn
print("grad_fn:\n", w.grad_fn, x.grad_fn, a.grad_fn, b.grad_fn, y.grad_fn)

在这段代码中,我们定义了两个张量wx,并且将它们设置为需要计算梯度(requires_grad=True)。然后我们定义了计算图中的各个操作:加法a = w + x,加法b = w + 1,乘法y = a * b
接下来,我们调用y.backward()来自动计算y对于所有需要梯度的叶子结点的梯度。在这个例子中,叶子结点是wx。然后,我们打印出w的梯度w.grad
运行这段代码,我们得到的输出是tensor([5.]),即w的梯度为5。

这篇关于计算图与动态图机制的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/561886

相关文章

java中反射(Reflection)机制举例详解

《java中反射(Reflection)机制举例详解》Java中的反射机制是指Java程序在运行期间可以获取到一个对象的全部信息,:本文主要介绍java中反射(Reflection)机制的相关资料... 目录一、什么是反射?二、反射的用途三、获取Class对象四、Class类型的对象使用场景1五、Class

Nginx之upstream被动式重试机制的实现

《Nginx之upstream被动式重试机制的实现》本文主要介绍了Nginx之upstream被动式重试机制的实现,可以通过proxy_next_upstream来自定义配置,具有一定的参考价值,感兴... 目录默认错误选择定义错误指令配置proxy_next_upstreamproxy_next_upst

Python如何计算两个不同类型列表的相似度

《Python如何计算两个不同类型列表的相似度》在编程中,经常需要比较两个列表的相似度,尤其是当这两个列表包含不同类型的元素时,下面小编就来讲讲如何使用Python计算两个不同类型列表的相似度吧... 目录摘要引言数字类型相似度欧几里得距离曼哈顿距离字符串类型相似度Levenshtein距离Jaccard相

Spring排序机制之接口与注解的使用方法

《Spring排序机制之接口与注解的使用方法》本文介绍了Spring中多种排序机制,包括Ordered接口、PriorityOrdered接口、@Order注解和@Priority注解,提供了详细示例... 目录一、Spring 排序的需求场景二、Spring 中的排序机制1、Ordered 接口2、Pri

MySQL 缓存机制与架构解析(最新推荐)

《MySQL缓存机制与架构解析(最新推荐)》本文详细介绍了MySQL的缓存机制和整体架构,包括一级缓存(InnoDBBufferPool)和二级缓存(QueryCache),文章还探讨了SQL... 目录一、mysql缓存机制概述二、MySQL整体架构三、SQL查询执行全流程四、MySQL 8.0为何移除查

一文详解Java Condition的await和signal等待通知机制

《一文详解JavaCondition的await和signal等待通知机制》这篇文章主要为大家详细介绍了JavaCondition的await和signal等待通知机制的相关知识,文中的示例代码讲... 目录1. Condition的核心方法2. 使用场景与优势3. 使用流程与规范基本模板生产者-消费者示例

一文带你理解Python中import机制与importlib的妙用

《一文带你理解Python中import机制与importlib的妙用》在Python编程的世界里,import语句是开发者最常用的工具之一,它就像一把钥匙,打开了通往各种功能和库的大门,下面就跟随小... 目录一、python import机制概述1.1 import语句的基本用法1.2 模块缓存机制1.

使用C#代码计算数学表达式实例

《使用C#代码计算数学表达式实例》这段文字主要讲述了如何使用C#语言来计算数学表达式,该程序通过使用Dictionary保存变量,定义了运算符优先级,并实现了EvaluateExpression方法来... 目录C#代码计算数学表达式该方法很长,因此我将分段描述下面的代码片段显示了下一步以下代码显示该方法如

Redis主从/哨兵机制原理分析

《Redis主从/哨兵机制原理分析》本文介绍了Redis的主从复制和哨兵机制,主从复制实现了数据的热备份和负载均衡,而哨兵机制可以监控Redis集群,实现自动故障转移,哨兵机制通过监控、下线、选举和故... 目录一、主从复制1.1 什么是主从复制1.2 主从复制的作用1.3 主从复制原理1.3.1 全量复制

Redis缓存问题与缓存更新机制详解

《Redis缓存问题与缓存更新机制详解》本文主要介绍了缓存问题及其解决方案,包括缓存穿透、缓存击穿、缓存雪崩等问题的成因以及相应的预防和解决方法,同时,还详细探讨了缓存更新机制,包括不同情况下的缓存更... 目录一、缓存问题1.1 缓存穿透1.1.1 问题来源1.1.2 解决方案1.2 缓存击穿1.2.1