「实验记录」CS144 Lab1 StreamReassembler

2024-01-01 13:52

本文主要是介绍「实验记录」CS144 Lab1 StreamReassembler,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

  • 一、Motivation
  • 二、Solutions
    • S1 - StreamReassembler的对外接口
    • S2 - push_substring序列写入ByteStream
  • 三、Result
  • 四、My Code
  • 五、Reference

一、Motivation

我们都知道 TCP 是基于字节流的传输方式,即 Receiver 收到的数据应该和 Sender 发送的数据是一样的。这里所说的 “一样” 指的是字节的顺序

比如,Sender 发送字符串 “abc”,在不出意外的情况下,Receiver 应该收到 “abc”,而不是 “acb” 或者 “cab” 之类的乱序字符串。事与愿违,网络环境通常是不太稳定的,经常会发生乱序的情况

我们无力稳定网络中的环境,即无法阻止数据乱序到达的情况;但是,我们可以将这些乱序到达的数据,按照每个字节的 index 将其有序排列,从而实现基于字节流传输的稳定方式。这就是 Lab1: StreamReassembler 的初衷,让我们自己设计一个字节排序器,理顺 Sender 发来的数据

下面我想补充的是一个关于 TCP/IP 架构的常识。为什么会发生乱序的情况呢?因为在 TCP/IP 架构中,数据都是按照分组报文的方式发送给 Receiver 的。还接着上述的例子,Sender 发出的字符串 “abc” 被切分成三个报文,报文 A 中包含了字符 a,报文 B 中包含了字符 b,报文 C 包含了字符 c。Sender 一口气将三个报文全部送上网络。之后,每个报文具体会走什么样的路线到达 Receiver,这完全取决于当时网络环境的拥堵情况和网络节点的路由算法

如果路线不同,那就不可能保证这三个报文按序到达 Receiver。可能出现的情况即是,报文 A(字符 a)先到,报文C(字符 c)其次,报文 B(字符 b)最后才到。Receiver 按照收到报文的顺序呈现出的字符串为 “acb”,这是彻头彻尾的错误(与 Sender 本意的字符串 “abc” 相悖)

二、Solutions

针对这种乱序的情况,我们来实现自己的字节流排序器,先来看一下讲义中的这张流向图,

乍一看是比较抽象的(教这门课的老师的独特审美),但是也能够理清我们 TCP 连接中字节流的几个重要节点

第一个,first unread 节点之前的数据是已经写入 ByteStream 中的,且被用户读取了;随后的 first unread 到 first unassembled 之间的数据是 Receiver 已收到且排好序写入到 ByteStream 中的内容;first unassembled 到 first unacceptable 区间的内容是 Recevier 断断续续收到的字节。可能不是连续的,比如,已经收到了字符串 “bc”,但还没有收到字符 ‘a’,此时构不成有序的 “abc”。只有在收到字符 ‘a’ 之后,才能将 “abc” 写入 ByteStream

ByteStream 讲究的是有序字节序列,即写入 ByteStream 的最后一个字节,它之前的字节都应该是接着前一个的 index 而来的,即字符 ‘c’ 之前就应该是字符 ‘b’,字符 ‘b’ 之前的就应该是字符 ‘a’,缺一个都是不连续的

S1 - StreamReassembler的对外接口

我们先来看看 Lab1: StreamReassembler 已经声明好的接口及注解,

//! \brief A class that assembles a series of excerpts from a byte stream (possibly out of order,
//! possibly overlapping) into an in-order byte stream.
class StreamReassembler {private:// Your code here -- add private members as necessary.ByteStream _output;  //!< The reassembled in-order byte streamsize_t _capacity;    //!< The maximum number of bytes/* 自添加的变量 */std::map<size_t, char> buf_;bool eof_flag_;size_t eof_idx_;private:/* 自定义的关键节点 get 方法 */size_t first_unread() const { return _output.bytes_read(); }size_t first_unassembled() const { return _output.bytes_written(); }size_t first_unacceptable() const { return first_unread()+_capacity; }public://! \brief Construct a `StreamReassembler` that will store up to `capacity` bytes.//! \note This capacity limits both the bytes that have been reassembled,//! and those that have not yet been reassembled.StreamReassembler(const size_t capacity);//! \brief Receives a substring and writes any newly contiguous bytes into the stream.//!//! If accepting all the data would overflow the `capacity` of this//! `StreamReassembler`, then only the part of the data that fits will be//! accepted. If the substring is only partially accepted, then the `eof`//! will be disregarded.//!//! \param data the string being added//! \param index the index of the first byte in `data`//! \param eof whether or not this segment ends with the end of the streamvoid push_substring(const std::string &data, const uint64_t index, const bool eof);//! \name Access the reassembled byte stream//!@{const ByteStream &stream_out() const { return _output; }ByteStream &stream_out() { return _output; }//!@}//! The number of bytes in the substrings stored but not yet reassembled//!//! \note If the byte at a particular index has been submitted twice, it//! should only be counted once for the purpose of this function.size_t unassembled_bytes() const;//! \brief Is the internal state empty (other than the output stream)?//! \returns `true` if no substrings are waiting to be assembledbool empty() const;
};

不难理解,类的初始化方法是设定 StreamReassember’s ByteStream 容量的,即 _output 的大小,其定义如下,

StreamReassembler::StreamReassembler(const size_t capacity) : _output(capacity), _capacity(capacity), buf_({}), eof_flag_(false), eof_idx_(0) {}

其中的 ByteStream 在 Lab0: networking warmup 中有定义,详情请移步。至于 eof_flag 和 eof_idx_ 会在之后的 push_substring() 中用到

接下来,第一个也是最重要的对外接口是 push_substring(data, index, eof),它会在 Receiver 收到新的字节时被调用。大致的功能是理顺刚收到的(可能会乱序)字节序列,并将其写入到 _output 中,以供上层读取。关于实现这个接口的具体细节我将在之后展开

之后便是上层获取 StreamReassember’s ByteStream 的方法 stream_out()。再强调一次!ByteStream 里面存放的是已有序的字节序列。未被排序的字节是没有资格写入其中的,这个是由 push_substring() 控制的

对外提供的最后两个关于容量的接口就较为简单了,unassembled_bytes() 返回的是已被接收但还未被排序的字节数,定义如下,

size_t StreamReassembler::unassembled_bytes() const { return buf_.size()-_output.bytes_written(); }

empty() 判断 StreamReassember 接收的字节序列是否已全部写入其 ByteStream 中,定义如下,

bool StreamReassembler::empty() const { return buf_.size()==_output.bytes_written(); }

其中,我们自定义的缓冲区 buf_ 的类型是 std::map<size_t, char>,作用是缓存 StreamReassember 接收的字节。利用 std::map 自带排序且去重的特性,根据每个字节的 index 对其进行排序。举个例子来说明,StreamReassember 现接收了三个字节,分别是 < 2, ‘b’ >,< 3, ‘c’ > 和 < 4, ‘d’ >,缓存进 buf_ 后应该是这样的,

假设 buf_ 的容量无穷大,目前已经收到了 3 个字符,我们根据字符的 index 将其归位,最直观的效果如上图左半边所示,和右半边我在程序中采用了 std::map 来实现缓冲排序的功能是一样的效果

我们可以看到目前字符 “bcd” 是连续的,但依然不可以写入 ByteStream;因为在此之前还缺少 index 1 的字符 ‘a’,只有等其到来,才能将字符串 “abcd” 写入 ByteStream

从这个例子中就可以理清 unassembled_bytes()empty() 的逻辑了。前者等于已收到的字节数为 3(已写入 buf_ 的字节) - 0(已写入 ByteStream 的字节数) = 3;后者判断缓冲区是否为空,就看 buf_ 中的字节是否已全部写入 ByteStream 中。很明显,例子中并未全部写入

S2 - push_substring序列写入ByteStream

理清 StreamReassember 的缓冲区 buf_ 的结构之后,我们再来考虑接收到新的字节应该如何处理?无非是先暂存新字节序列并对其进行排序,然后再将有序的部分写入到 ByteStream 中。且看定义,

//! \details This function accepts a substring (aka a segment) of bytes,
//! possibly out-of-order, from the logical stream, and assembles any newly
//! contiguous substrings and writes them into the output stream in order.
void StreamReassembler::push_substring(const string &data, const size_t index, const bool eof) {// DUMMY_CODE(data, index, eof);/* 检查若为 eof,则记录下结尾的位置 */if(eof) {eof_flag_ = true;eof_idx_ = index+data.length();}/* 暂存 up2date 的字符串 */for(size_t i=0; i<data.length(); i++) {/* 已写入 ByteStream 的字符不需要进 buf */if(index+i >= first_unassembled()) buf_.emplace(index+i, data[i]);}/* 将已 in-order 的字符串写入 Bytestream 中 */size_t idx = first_unassembled();string res = "";for(auto ite=buf_.begin(); ite!=buf_.end(); ite++) {/* 找到下标 index 的字符 */if(ite->first < idx)  continue;/* 已不连续的情况下,无需继续往下寻找可以连接的字符 */if(ite->first>idx || idx>=first_unacceptable())break;if(ite->first==idx && idx<first_unacceptable()) {res.push_back(ite->second);idx++;}}/* 在 ByteStream 容量范围之内,将已 in-order 的字符串写入其中 */if(!res.empty()) _output.write(res);  /* 得知已 eof 且所有已 in-order 的字符已写入 ByteStream 中,则关闭之 */if(eof_flag_ && first_unassembled()==eof_idx_) _output.end_input();
}

当然,在流程的开始环节就需要判断 Receiver 这次接收到的字节是否是 Sender 发来的最后一个报文(有 eof 标志)

如果是最后一个报文,则需要提前做好结束标记。为什么要提前做好结束标记呢?是因为 TCP/IP 网络采用分组报文的方式发送数据,也就是说传输过程中并不能保证到达的先后顺序,Sender 发送的包含 eof 的结束报文可能因为路由选择反而第一个到达 Receiver,真正有数据的报文在之后才送达。这种情况在 TCP/IP 网络中应该是很常见的

在判断过 eof 之后,我们先一股脑地将收到的字节缓存到 buf_ 中,这里我做了一个小优化,即加上 if 判断,无视那些已经写入 ByteStream 中的字节,不将其写入 buf_ 中

下面就进入核心环节,即检出 buf_ 中已有序的字节序列。请注意,我这里说的已有序还有一个附加条件,即是从 buf_ 中的第一个字节开始就已经有序!!!

如果遍历到一个字符,它与前一个不成连续关系(index 是否加 1),那么我们就能够认定此时已经不连续了。可以跳出检出环节,将有序序列写入 ByteStream 中

最后,需要判断一下含有 eof 的字符是否已经被写入 ByteStream。如果 eof 字符都已经写入 ByteStream 了,那么就意味着在它之前的所有字符也都已经写入 ByteStream。此时,我们就可以关闭 ByteStream 了,告诉它 Sender 不会再发来数据了

三、Result

CS144 Lab 是一环套一环的结构,也就是说 Lab1: StreamReassembler 是基于 Lab0 networking warmup code 的,所以,我们在开始之前还需要透过 git fetchgit merge 拉取合并最新的代码,

$ git fetch
$ git merge origin/lab1-startercode

以上命令在 Lab1: StreamReassembler 的根目录中下发即可。编写好 code 之后,进入 bulid 目录先透过 make 命令进行编译,随后再下发 make check_lab1 检查是否通过了每个测试点,

$ make check_lab1
[100%] Testing the stream reassembler...
Test project /home/jeffrey/Documents/lab1-stitching-substrings-into-a-byte-stream/buildStart 15: t_strm_reassem_single1/16 Test #15: t_strm_reassem_single ............   Passed    0.01 secStart 16: t_strm_reassem_seq2/16 Test #16: t_strm_reassem_seq ...............   Passed    0.01 secStart 17: t_strm_reassem_dup3/16 Test #17: t_strm_reassem_dup ...............   Passed    0.01 secStart 18: t_strm_reassem_holes4/16 Test #18: t_strm_reassem_holes .............   Passed    0.00 secStart 19: t_strm_reassem_many5/16 Test #19: t_strm_reassem_many ..............   Passed    1.77 secStart 20: t_strm_reassem_overlapping6/16 Test #20: t_strm_reassem_overlapping .......   Passed    0.00 secStart 21: t_strm_reassem_win7/16 Test #21: t_strm_reassem_win ...............   Passed    2.13 secStart 22: t_byte_stream_construction8/16 Test #22: t_byte_stream_construction .......   Passed    0.01 secStart 23: t_byte_stream_one_write9/16 Test #23: t_byte_stream_one_write ..........   Passed    0.01 secStart 24: t_byte_stream_two_writes
10/16 Test #24: t_byte_stream_two_writes .........   Passed    0.00 secStart 25: t_byte_stream_capacity
11/16 Test #25: t_byte_stream_capacity ...........   Passed    0.00 secStart 26: t_byte_stream_many_writes
12/16 Test #26: t_byte_stream_many_writes ........   Passed    0.01 secStart 27: t_webget
13/16 Test #27: t_webget .........................   Passed    0.46 secStart 47: t_address_dt
14/16 Test #47: t_address_dt .....................   Passed    0.01 secStart 48: t_parser_dt
15/16 Test #48: t_parser_dt ......................   Passed    0.00 secStart 49: t_socket_dt
16/16 Test #49: t_socket_dt ......................   Passed    0.01 sec100% tests passed, 0 tests failed out of 16Total Test time (real) =   4.46 sec
[100%] Built target check_lab1

四、My Code

  1. CS144 Labs code 总入口

  2. CS144 Lab1 入口

五、Reference

  1. CSDN - CS144 lab1

这篇关于「实验记录」CS144 Lab1 StreamReassembler的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/559452

相关文章

Node.js学习记录(二)

目录 一、express 1、初识express 2、安装express 3、创建并启动web服务器 4、监听 GET&POST 请求、响应内容给客户端 5、获取URL中携带的查询参数 6、获取URL中动态参数 7、静态资源托管 二、工具nodemon 三、express路由 1、express中路由 2、路由的匹配 3、路由模块化 4、路由模块添加前缀 四、中间件

记录每次更新到仓库 —— Git 学习笔记 10

记录每次更新到仓库 文章目录 文件的状态三个区域检查当前文件状态跟踪新文件取消跟踪(un-tracking)文件重新跟踪(re-tracking)文件暂存已修改文件忽略某些文件查看已暂存和未暂存的修改提交更新跳过暂存区删除文件移动文件参考资料 咱们接着很多天以前的 取得Git仓库 这篇文章继续说。 文件的状态 不管是通过哪种方法,现在我们已经有了一个仓库,并从这个仓

STM32(十一):ADC数模转换器实验

AD单通道: 1.RCC开启GPIO和ADC时钟。配置ADCCLK分频器。 2.配置GPIO,把GPIO配置成模拟输入的模式。 3.配置多路开关,把左面通道接入到右面规则组列表里。 4.配置ADC转换器, 包括AD转换器和AD数据寄存器。单次转换,连续转换;扫描、非扫描;有几个通道,触发源是什么,数据对齐是左对齐还是右对齐。 5.ADC_CMD 开启ADC。 void RCC_AD

学习记录:js算法(二十八):删除排序链表中的重复元素、删除排序链表中的重复元素II

文章目录 删除排序链表中的重复元素我的思路解法一:循环解法二:递归 网上思路 删除排序链表中的重复元素 II我的思路网上思路 总结 删除排序链表中的重复元素 给定一个已排序的链表的头 head , 删除所有重复的元素,使每个元素只出现一次 。返回 已排序的链表 。 图一 图二 示例 1:(图一)输入:head = [1,1,2]输出:[1,2]示例 2:(图

HNU-2023电路与电子学-实验3

写在前面: 一、实验目的 1.了解简易模型机的内部结构和工作原理。 2.分析模型机的功能,设计 8 重 3-1 多路复用器。 3.分析模型机的功能,设计 8 重 2-1 多路复用器。 4.分析模型机的工作原理,设计模型机控制信号产生逻辑。 二、实验内容 1.用 VERILOG 语言设计模型机的 8 重 3-1 多路复用器; 2.用 VERILOG 语言设计模型机的 8 重 2-1 多

perl的学习记录——仿真regression

1 记录的背景 之前只知道有这个强大语言的存在,但一直侥幸自己应该不会用到它,所以一直没有开始学习。然而人生这么长,怎就确定自己不会用到呢? 这次要搭建一个可以自动跑完所有case并且打印每个case的pass信息到指定的文件中。从而减轻手动跑仿真,手动查看log信息的重复无效低质量的操作。下面简单记录下自己的思路并贴出自己的代码,方便自己以后使用和修正。 2 思路整理 作为一个IC d

SSM项目使用AOP技术进行日志记录

本步骤只记录完成切面所需的必要代码 本人开发中遇到的问题: 切面一直切不进去,最后发现需要在springMVC的核心配置文件中中开启注解驱动才可以,只在spring的核心配置文件中开启是不会在web项目中生效的。 之后按照下面的代码进行配置,然后前端在访问controller层中的路径时即可观察到日志已经被正常记录到数据库,代码中有部分注释,看不懂的可以参照注释。接下来进入正题 1、导入m

flume系列之:记录一次flume agent进程被异常oom kill -9的原因定位

flume系列之:记录一次flume agent进程被异常oom kill -9的原因定位 一、背景二、定位问题三、解决方法 一、背景 flume系列之:定位flume没有关闭某个时间点生成的tmp文件的原因,并制定解决方案在博主上面这篇文章的基础上,在机器内存、cpu资源、flume agent资源都足够的情况下,flume agent又出现了tmp文件无法关闭的情况 二、

Linux常用工具与命令日常记录(长期更新)

Linux常用工具与命令日常记录(长期更新) 目录 1.本地复制到远程2.Linux压缩拆包与解压3.生成随机密码4.ubuntu默认Python版本设置5.计算当前文件夹中文件数量6.windows中编写shell脚本,在Linux运行出错7.history 历史命令显示时间用户8.Ubuntu18.04设置源、网卡9.Ubuntu18.04设置网卡10.Ubuntu:自定义开

Excel和Word日常使用记录:

Excel使用总结 表格颜色填充: 合并单元格: 选中你要合并的单元格区域。按下快捷键 Alt + H,然后松开这些键。再按下 M,接着按 C。这个组合键执行的操作是:Alt + H:打开“主页”选项卡。M:选择“合并单元格”选项。C:执行“合并并居中”操作。 插入行: 在Excel中,插入一行的快捷键是:Windows:选择整行(可以点击行号)。按下 Ctrl + Sh