默认ForkJoinPool引发的Redis lettuceP99升高

2024-01-01 10:38

本文主要是介绍默认ForkJoinPool引发的Redis lettuceP99升高,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

背景:

推荐系统升级RedisCluster4的SDK后,与之前的redis2.8的jedis客户端相比性能下降,具体表现在对应接口P99升高

问题原因:

在项目中使用了parallelStream的并行执行,其和lettuce的异步获取结果的CompletableFuture线程共用了一个ForkJoinPool

解决方案:

去除对于parallelStream的依赖,使用单独的线程池

通过排查堆栈,发现parallelStream产生大量的ForkJoin线程,怀疑其和lettuce的future线程之间产生资源竞争,将parallelStream去掉之后,P99明显改善

这个是接口的P99

 

这个是REDIS4Client的hmget P99

 

这个是REDIS4Client的firstResponse的 P99

 

http://matrix.snowballfinance.com/d/RGsiCO7Zz/recommend-recall?orgId=1&from=1616569005047&to=1616583596889

另外CPU和线程总数也不再出现大的波动

 

 

原理分析:

ParallelStream的执行线程池

对应forEach流

ForEachOps::compute方法打个断点,

或者直接forEach方法的输出语句打个断点,找到ForkJoinWorkerThread类

public class ForkJoinWorkerThread extends Thread {

   final ForkJoinPool pool;                // the pool this thread works in

   final ForkJoinPool.WorkQueue workQueue; // work-stea

   public void run() {

       ....

       pool.runWorker(workQueue);

       ....

    }

 }

completableFuture的执行线程池

private static final Executor asyncPool = useCommonPool ?

    ForkJoinPool.commonPool() : new ThreadPerTaskExecutor();

//useCommonPool是什么?

private static final boolean useCommonPool =

    (ForkJoinPool.getCommonPoolParallelism() > 1);

public static int getCommonPoolParallelism() {

    return commonParallelism;

}

 

 

private static ForkJoinPool makeCommonPool() {

    int parallelism = -1;  //这个并发的线程数默认是-1

    ForkJoinWorkerThreadFactory factory = null;

  。。。。。。

    if (parallelism < 0 &&

        (parallelism = Runtime.getRuntime().availableProcessors() - 1) <= 0)  //看到了吧,线程池中的处理线程数=电脑核数-1

        parallelism = 1;

    if (parallelism > MAX_CAP)

        parallelism = MAX_CAP;

    return new ForkJoinPool(parallelism, factory, handler, LIFO_QUEUE,

                            "ForkJoinPool.commonPool-worker-");  //指定线程的名字

}

而lettuce中对于结果的返回使用的LettuceFutures--awaitOrCancel(RedisFuture<T> cmd, long timeout, TimeUnit unit)获取执行结果,

其中RedisFuture的awite实现AsyncCommand类的就是靠CompletableFuture完成的,就会和上面的parallelStream共用一个ForkJoinPool

/**

 * Wait until futures are complete or the supplied timeout is reached. Commands are canceled if the timeout is reached but

 * the command is not finished.

 *

 * @param cmd Command to wait for

 * @param timeout Maximum time to wait for futures to complete

 * @param unit Unit of time for the timeout

 * @param <T> Result type

 *

 * @return Result of the command.

 */

public static <T> T awaitOrCancel(RedisFuture<T> cmd, long timeout, TimeUnit unit) {

 

    try {

        if (!cmd.await(timeout, unit)) {

            cmd.cancel(true);

            throw ExceptionFactory.createTimeoutException(Duration.ofNanos(unit.toNanos(timeout)));

        }

        return cmd.get();

    catch (RuntimeException e) {

        throw e;

    catch (ExecutionException e) {

 

        if (e.getCause() instanceof RedisCommandExecutionException) {

            throw ExceptionFactory.createExecutionException(e.getCause().getMessage(), e.getCause());

        }

 

        if (e.getCause() instanceof RedisCommandTimeoutException) {

            throw new RedisCommandTimeoutException(e.getCause());

        }

 

        throw new RedisException(e.getCause());

    catch (InterruptedException e) {

 

        Thread.currentThread().interrupt();

        throw new RedisCommandInterruptedException(e);

    catch (Exception e) {

        throw ExceptionFactory.createExecutionException(null, e);

    }

}

隔离了这种线程池的资源,这样对redis这种快速的线程就不会被队列中慢的线程影响获取时间片

这里留下一个问题:并发和并行的区别是?

测试代码:

1.使用parallelStream

RedisCluster redisCluster = RedisClusterImpl.create("192.168.64.169:8056,192.168.64.169:8053"4);

Thread thread1 = new Thread(() -> {

    int i = 0;

    while (true) {

        try {

            redisCluster.setex("k" + i, 10000"v" + i);

            Long start = System.currentTimeMillis();

            logger.info("RedisCluster4 info key:{}, value:{}""k" + i, redisCluster.get("k" + i));

            Long costTime = System.currentTimeMillis() - start;

            if (costTime > 10) {

                logger.info("RedisCluster4 slowlog :{}", costTime);

            }

            i++;

        catch (Exception ex) {

            logger.error("RedisCluster4 error, {}", ex.getMessage(), ex);

        }

    }

});

thread1.start();

 

Thread thread2 = new Thread(() -> {

    while (true) {

        try {

            List<Integer> list = new ArrayList<>();

            for (int j = 0; j < 10000; j++) {

                list.add(j);

            }

            list.parallelStream().forEach(f-> {

                logger.info("parallelStream log :{}", f);

                for (int j = 0; j < 10000; j++) {

                }

            });

        catch (Exception ex) {

            logger.error("RedisCluster4 error, {}", ex.getMessage(), ex);

        }

    }

});

 

thread2.start();

打印的监控日志:平均P99≈100ms

2021-03-25 11:38:33.976|192.168.18.128|sep|UNKNOWN|app|TIMER|REDIS4.get||{"count":7509,"delta":7509,"min":0.22,"max":183.88,"mean":20.53,"stddev":27.56,"median":20.53,"p50":5.44,"p75":38.77,"p95":59.57,"p98":104.12,"p99":150.59,"p999":177.77,"mean_rate":739.0,"m1":660.86,"m5":647.65,"m15":645.36,"ratio":7.33,"rate_unit":"events/second","duration_unit":"milliseconds"}
2021-03-25 11:38:33.979|192.168.18.128|sep|UNKNOWN|app|TIMER|REDIS4.setex||{"count":275,"delta":275,"min":0.27,"max":215.22,"mean":19.2,"stddev":30.82,"median":19.2,"p50":3.88,"p75":38.08,"p95":56.55,"p98":107.48,"p99":176.4,"p999":215.22,"mean_rate":27.3,"m1":21.87,"m5":21.02,"m15":20.87,"ratio":9.19,"rate_unit":"events/second","duration_unit":"milliseconds"}

2.使用多线程,但是得做到控制的和ForkJoinPool一样 

RedisCluster redisCluster = RedisClusterImpl.create("192.168.64.169:8056,192.168.64.169:8053"4);

Thread thread1 = new Thread(() -> {

    int i = 0;

    while (true) {

        try {

            redisCluster.setex("k" + i, 10000"v" + i);

            Long start = System.currentTimeMillis();

            logger.info("RedisCluster4 info key:{}, value:{}""k" + i, redisCluster.get("k" + i));

            Long costTime = System.currentTimeMillis() - start;

            if (costTime > 10) {

                logger.info("RedisCluster4 slowlog :{}", costTime);

            }

            i++;

        catch (Exception ex) {

            logger.error("RedisCluster4 error, {}", ex.getMessage(), ex);

        }

    }

});

thread1.start();

 

ForkJoinPool forkJoinPool = new ForkJoinPool(Runtime.getRuntime().availableProcessors() - 1, ForkJoinPool.defaultForkJoinWorkerThreadFactory, nulltrue);

forkJoinPool.submit(new Runnable() {

    @Override

    public void run() {

        while (true) {

            try {

                for (int j = 0; j < 10000; j++) {

                    logger.info("parallelStream log :{}", j);

                    redisCluster.get("k" + j);

                }

            catch (Exception ex) {

                logger.error("RedisCluster4 error, {}", ex.getMessage(), ex);

            }

        }

    }

});

}

打印的监控日志:平均P99≈36ms

2021-03-25 11:43:58.565|192.168.18.128|sep|UNKNOWN|app|TIMER|REDIS4.get||{"count":22924,"delta":4670,"min":0.2,"max":91.88,"mean":3.45,"stddev":9.19,"median":3.45,"p50":0.8,"p75":1.24,"p95":34.76,"p98":35.57,"p99":36.17,"p999":40.72,"mean_rate":456.99,"m1":445.99,"m5":433.02,"m15":430.13,"ratio":10.5,"rate_unit":"events/second","duration_unit":"milliseconds"}
2021-03-25 11:43:58.575|192.168.18.128|sep|UNKNOWN|app|TIMER|REDIS4.setex||{"count":7421,"delta":1510,"min":0.22,"max":152.41,"mean":3.36,"stddev":9.85,"median":3.36,"p50":0.88,"p75":1.3,"p95":34.92,"p98":36.06,"p99":37.13,"p999":152.41,"mean_rate":147.83,"m1":145.05,"m5":141.57,"m15":140.81,"ratio":11.06,"rate_unit":"events/second","duration_unit":"milliseconds"}

与forkJoin一起在池里面的那个线程栈

java.util.concurrent.locks.LockSupport.parkNanos(LockSupport.java:215)
java.util.concurrent.CompletableFuture$Signaller.block(CompletableFuture.java:1695)
java.util.concurrent.ForkJoinPool.managedBlock(ForkJoinPool.java:3323)
java.util.concurrent.CompletableFuture.timedGet(CompletableFuture.java:1775)
java.util.concurrent.CompletableFuture.get(CompletableFuture.java:1915)
io.lettuce.core.protocol.AsyncCommand.await(AsyncCommand.java:83)
io.lettuce.core.LettuceFutures.awaitOrCancel(LettuceFutures.java:112)

3.最单纯redis4Client查询

RedisCluster redisCluster = RedisClusterImpl.create("192.168.64.169:8056,192.168.64.169:8053"4);

Thread thread1 = new Thread(() -> {

    int i = 0;

    while (true) {

        try {

            redisCluster.setex("k" + i, 10000"v" + i);

            Long start = System.currentTimeMillis();

            logger.info("RedisCluster4 info key:{}, value:{}""k" + i, redisCluster.get("k" + i));

            Long costTime = System.currentTimeMillis() - start;

            if (costTime > 10) {

                logger.info("RedisCluster4 slowlog :{}", costTime);

            }

            i++;

        catch (Exception ex) {

            logger.error("RedisCluster4 error, {}", ex.getMessage(), ex);

        }

    }

});

thread1.start();

打印的监控日志:平均P99≈35ms

2021-03-25 13:47:05.137|192.168.18.128|sep|UNKNOWN|app|TIMER|REDIS4.get||{"count":12846,"delta":2362,"min":0.21,"max":85.23,"mean":2.27,"stddev":7.77,"median":2.27,"p50":0.54,"p75":0.71,"p95":2.55,"p98":34.67,"p99":35.12,"p999":85.23,"mean_rate":213.46,"m1":195.49,"m5":164.06,"m15":156.74,"ratio":15.48,"rate_unit":"events/second","duration_unit":"milliseconds"}
2021-03-25 13:47:05.146|192.168.18.128|sep|UNKNOWN|app|TIMER|REDIS4.setex||{"count":12847,"delta":2362,"min":0.22,"max":84.04,"mean":1.96,"stddev":6.91,"median":1.96,"p50":0.62,"p75":0.79,"p95":1.9,"p98":34.53,"p99":35.03,"p999":84.04,"mean_rate":213.32,"m1":195.42,"m5":163.9,"m15":156.56,"ratio":17.9,"rate_unit":"events/second","duration_unit":"milliseconds"}

所有的监控日志文件: text fileMyselfRedis4Test.java

从三者的对比可以验证上面的那个结论,就是做了资源隔离,是有一定的帮助

建议:

不要在高并发的接口中使用并行流,有i/o操作的一定不要使用并行流,有线程休眠的也一定不要使用并行流,如果有需要,那就全局创建一个Fork-Join线程池自己切分任务来执行。

彩蛋:

对上面的遗留小问题解答:

并行同时执行,并发可以交替执行

 

这篇关于默认ForkJoinPool引发的Redis lettuceP99升高的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/559000

相关文章

redis群集简单部署过程

《redis群集简单部署过程》文章介绍了Redis,一个高性能的键值存储系统,其支持多种数据结构和命令,它还讨论了Redis的服务器端架构、数据存储和获取、协议和命令、高可用性方案、缓存机制以及监控和... 目录Redis介绍1. 基本概念2. 服务器端3. 存储和获取数据4. 协议和命令5. 高可用性6.

Redis的数据过期策略和数据淘汰策略

《Redis的数据过期策略和数据淘汰策略》本文主要介绍了Redis的数据过期策略和数据淘汰策略,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录一、数据过期策略1、惰性删除2、定期删除二、数据淘汰策略1、数据淘汰策略概念2、8种数据淘汰策略

Redis存储的列表分页和检索的实现方法

《Redis存储的列表分页和检索的实现方法》在Redis中,列表(List)是一种有序的数据结构,通常用于存储一系列元素,由于列表是有序的,可以通过索引来访问元素,因此可以很方便地实现分页和检索功能,... 目录一、Redis 列表的基本操作二、分页实现三、检索实现3.1 方法 1:客户端过滤3.2 方法

Python中操作Redis的常用方法小结

《Python中操作Redis的常用方法小结》这篇文章主要为大家详细介绍了Python中操作Redis的常用方法,文中的示例代码简洁易懂,具有一定的借鉴价值,有需要的小伙伴可以了解一下... 目录安装Redis开启、关闭Redisredis数据结构redis-cli操作安装redis-py数据库连接和释放增

redis防止短信恶意调用的实现

《redis防止短信恶意调用的实现》本文主要介绍了在场景登录或注册接口中使用短信验证码时遇到的恶意调用问题,并通过使用Redis分布式锁来解决,具有一定的参考价值,感兴趣的可以了解一下... 目录1.场景2.排查3.解决方案3.1 Redis锁实现3.2 方法调用1.场景登录或注册接口中,使用短信验证码场

Redis 多规则限流和防重复提交方案实现小结

《Redis多规则限流和防重复提交方案实现小结》本文主要介绍了Redis多规则限流和防重复提交方案实现小结,包括使用String结构和Zset结构来记录用户IP的访问次数,具有一定的参考价值,感兴趣... 目录一:使用 String 结构记录固定时间段内某用户 IP 访问某接口的次数二:使用 Zset 进行

解读Redis秒杀优化方案(阻塞队列+基于Stream流的消息队列)

《解读Redis秒杀优化方案(阻塞队列+基于Stream流的消息队列)》该文章介绍了使用Redis的阻塞队列和Stream流的消息队列来优化秒杀系统的方案,通过将秒杀流程拆分为两条流水线,使用Redi... 目录Redis秒杀优化方案(阻塞队列+Stream流的消息队列)什么是消息队列?消费者组的工作方式每

Redis如何使用zset处理排行榜和计数问题

《Redis如何使用zset处理排行榜和计数问题》Redis的ZSET数据结构非常适合处理排行榜和计数问题,它可以在高并发的点赞业务中高效地管理点赞的排名,并且由于ZSET的排序特性,可以轻松实现根据... 目录Redis使用zset处理排行榜和计数业务逻辑ZSET 数据结构优化高并发的点赞操作ZSET 结

Redis的Zset类型及相关命令详细讲解

《Redis的Zset类型及相关命令详细讲解》:本文主要介绍Redis的Zset类型及相关命令的相关资料,有序集合Zset是一种Redis数据结构,它类似于集合Set,但每个元素都有一个关联的分数... 目录Zset简介ZADDZCARDZCOUNTZRANGEZREVRANGEZRANGEBYSCOREZ

Redis多种内存淘汰策略及配置技巧分享

《Redis多种内存淘汰策略及配置技巧分享》本文介绍了Redis内存满时的淘汰机制,包括内存淘汰机制的概念,Redis提供的8种淘汰策略(如noeviction、volatile-lru等)及其适用场... 目录前言一、什么是 Redis 的内存淘汰机制?二、Redis 内存淘汰策略1. pythonnoe