Python生成器 (Generators in Python)

2023-12-30 14:04
文章标签 python 生成器 generators

本文主要是介绍Python生成器 (Generators in Python),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Generators in Python

文章目录

  • Generators in Python
    • Introduction 导言
    • 贯穿全文的几句话
    • 为什么 Python 有生成器Generator?
    • 如何获得生成器Generator?
      • 1. 生成器表达式 Generator Expression
      • 2. 使用yield定义生成器Generator
    • 更多Generator应用实例
      • 表示无限的数据流infinite stream of data
      • 将多个生成器generators组成管道pipeline
    • Conclusion 结论

Introduction 导言

生成器generator是 Python 中用来生成迭代器Iterators的一个方便而强大的工具。本篇文章将通过一些示例来解释和深入介绍 Python 中的生成器generators。

如果您还没有完全理解 Itreators,不用担心,请阅读此篇文章。

贯穿全文的几句话

  • 只要一个函数function中使用了 yield 这个关键字,就代表这个函数function每次调用时返回的是一个生成器对象 generator object。这个生成器对象的类型是<class ‘generator’>。

  • 包含 yield 语句的函数function本身并不是生成器generator,它仍然是一个函数function。生成器generator是一个类class,而不是函数function。

  • 生成器generator是迭代器Iterator的一个子类subclass。

  • 生成器generator保存的是产生item的生成方法/算法,而不是items。

  • next() 函数只能用于生成器generator类型。不能用于函数function。

def func():yield "Hello"print(func)  # <function func at 0x10d55c0d0>
print(type(func))  # <class 'function'>g1 = func()
g2 = func()
print(id(g1), id(g2))  # 4519738272 4519739168
print(g1)  # <generator object func at 0x10d65bba0>
print(type(g1))  # <class 'generator'>
print(next(g1))  # Hello

为什么 Python 有生成器Generator?

我们可以通过在 Python 类class中实现implementing __iter__()__next__() 特殊方法special methods来获得迭代器Iterator。不过,这种方法有点复杂,尽管它有助于理解迭代器Iterators的真正工作原理。

通过生成器generators创建迭代器Iterators是一种更好、更方便的方法。事实上,生成器就是迭代器的子类the Generator is a subclass of the Iterator。

Iterable可迭代对象、Iterator迭代器 和 Generator生成器 的关系如下:

在这里插入图片描述

如上图所示,Iterator 是 Iterable 的子类,Generator 是 Iterator 的子类。

# 源码在_collections_abc.py
class Iterable(metaclass=ABCMeta):@abstractmethoddef __iter__(self): ...
# 源码在_collections_abc.py
class Iterator(Iterable):@abstractmethoddef __next__(self): raise StopIterationdef __iter__(self): return self
# 源码在_collections_abc.py
class Generator(Iterator):def __iter__(self):return selfdef __next__(self):"""Return the next item from the generator.When exhausted, raise StopIteration."""return self.send(None)@abstractmethoddef send(self, value):"""Send a value into the generator.Return next yielded value or raise StopIteration."""raise StopIteration@abstractmethoddef throw(self, typ, val=None, tb=None):"""Raise an exception in the generator.Return next yielded value or raise StopIteration."""...def close(self):"""Raise GeneratorExit inside generator."""...

生成器(Generator)与迭代器(Iterator)具有相同的作用,用于保存一个知道如何生成所需元素的方法method。在Python中操作一个大的列表是非常耗时的。如果我们每次只需要获取一个元素element,那么生成器generator就是一个很好的选择,它可以减少时间和空间成本。

在 Python 中,只要一个函数function中使用了 yield 这个关键字,就代表这个函数function每次调用时都是返回一个生成器对象 generator object,注意:包含 yield 语句的函数function本身并不是生成器generator,它仍然是一个函数function。生成器generator是一个类class,而不是函数function。而 yield 的作用就相当于让 Python 帮我们把一个“串行”的逻辑转换成 iterator 的形式。

生成器generator都是Iterator迭代器对象。

如何获得生成器Generator?

1. 生成器表达式 Generator Expression

生成器表达式generator expression是获取生成器generator的最简单方法。它与 列表推导式list comprehensions 非常相似。我们只需将括号brackets改为小括号parentheses。

my_list = [i for i in range(8)]
my_generator = (i for i in range(8))print(my_list)
print(my_generator)# [0, 1, 2, 3, 4, 5, 6, 7]
# <generator object <genexpr> at 0x7f8fc3ec9a40>

由于生成器generator保存的是item生成方法而不是items,因此我们需要使用 next() 函数逐个获取项目get items one by one,这与迭代器Iterator相同。当所有项目items都生成后, next() 函数将引发 StopIteration 错误信息。当然,我们也可以使用 for 循环来获取生成器generator中的项目items。

2. 使用yield定义生成器Generator

如果一个函数function包含 yield 语句,它就可以产生生成器generators。

def my_generator(maximum):n = 0while n < maximum:n += 1yield nreturn 'Done'g = my_generator(maximum=5)
print(g)  # <generator object my_generator at 0x10e269ba0>
print(next(g))  # 1
print(next(g))  # 2
print(next(g))  # 3
print(next(g))  # 4
print(next(g))  # 5
next(g)
# Traceback (most recent call last):
#   File "/usr/lib/python3.9/code.py", line 15, in <module>
#     next(g)
# StopIteration: Done

yield 表示 “产生”或“生成”produce。当程序执行到 yield 语句时,就会 "生产produce"一个值即项目item,而 next() 函数function就会在此暂停pauses there执行,等待下一次调用。

当我们再次使用 next() 函数function对生成器对象generator object进行调用,它会让生成器对象generator object从上一次暂停的位置继续执行,直到遇到下一个 yield 语句或者执行结束。

普通函数normal functions 与 包含 yield 的函数functions including yield 的主要区别在于执行流程execution flow

  • 普通函数按顺序执行executes sequentially,并在遇到 return 语句statement或到达最后一行final line时返回结果。
  • 包括 yield 的函数会在调用 next() 时执行,并在遇到 yield 语句时返回。再次调用 next() 时,将从上次暂停的 yield 语句处继续执行。

有一个例子:

def example():print('step 1')yield 1print('step 2')yield 2print('step 3')yield 3g = example()next(g)
# step 1
# 1
next(g)
# step 2
# 2
next(g)
# step 3
# 3
next(g)
# Traceback (most recent call last):
#   File "/usr/lib/python3.9/code.py", line 21, in <module>
#     next(g)
# StopIteration

注:包含 yield 语句的函数本身并不是生成器generator。它仍然是一个函数function,但每次调用这个函数function时都可以返回一个生成器对象return a generator,这个生成器对象的类型是<class ‘generator’>。生成器generator是一个类class,而不是函数function。(正如我们之前所说,生成器generator是迭代器Iterator的一个子类subclass)。

next() 只能用于生成器generator类型。不能用于函数function。

def my_generator(maximum):n = 0while n < maximum:yield nreturn 'Done'print(type(my_generator))  # <class 'function'>print(type(my_generator(5)))  # <class 'generator'>print(my_generator(5))  # <generator object my_generator at 0x10bc42ba0>print(next(my_generator(5)))  # 0print(next(my_generator))
# Traceback (most recent call last):
#   File "/usr/lib/python3.9/code.py", line 15, in <module>
#     print(next(my_generator))
# TypeError: 'function' object is not an iterator

更多Generator应用实例

到目前为止,我们知道生成器generators可以帮助我们保存生成项目items的算法,并在需要时生成项目items。与包含所有项目items的庞大列表list相比,生成器可以减少时间和内存成本。

表示无限的数据流infinite stream of data

事实上,生成器generator甚至可以表示无限的数据流infinite stream of data。例如:

def fibonacci():x, y = 0, 1while True:x, y = y, x + yyield xfib = fibonacci()
print(next(fib))
print(next(fib))
print(next(fib))
print(next(fib))
print(next(fib))
print(next(fib))
# ...

fib 是一个无限生成器infinite generator,我们可以根据自己的需要使用它。

将多个生成器generators组成管道pipeline

生成器generators的另一个有趣应用interesting application是,我们可以将一系列生成器generators组合起来,得到一个新的生成器generator,这在技术technically上被称为 “管道pipeline”。

def times_two(nums):for n in nums:yield n * 2def natural_number(maximum):x = 0while x < maximum:yield xx += 1p = times_two(natural_number(10))
print(type(p))  # <class 'generator'>
print(next(p))  # 0
print(next(p))  # 2
print(next(p))  # 4
print(next(p))  # 6
print(next(p))  # 8
print(next(p))  # 10
print(next(p))  # 12
# ...

如上例所示,我们可以使用现有的两个生成器generators来定义一个新的生成器generator。这不是很好吗?

Conclusion 结论

生成器Generator是 Python 中一种非常有用的机制useful mechanism,可以减少时间reduce time和内存开销memory costs。它保存的是产生项item的算法algorithm而不是项items。我们还可以使用生成器generators生成produce无限的数据流infinite data stream和管道pipelines。

这篇关于Python生成器 (Generators in Python)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/553065

相关文章

Python结合PyWebView库打造跨平台桌面应用

《Python结合PyWebView库打造跨平台桌面应用》随着Web技术的发展,将HTML/CSS/JavaScript与Python结合构建桌面应用成为可能,本文将系统讲解如何使用PyWebView... 目录一、技术原理与优势分析1.1 架构原理1.2 核心优势二、开发环境搭建2.1 安装依赖2.2 验

一文详解如何在Python中从字符串中提取部分内容

《一文详解如何在Python中从字符串中提取部分内容》:本文主要介绍如何在Python中从字符串中提取部分内容的相关资料,包括使用正则表达式、Pyparsing库、AST(抽象语法树)、字符串操作... 目录前言解决方案方法一:使用正则表达式方法二:使用 Pyparsing方法三:使用 AST方法四:使用字

Python列表去重的4种核心方法与实战指南详解

《Python列表去重的4种核心方法与实战指南详解》在Python开发中,处理列表数据时经常需要去除重复元素,本文将详细介绍4种最实用的列表去重方法,有需要的小伙伴可以根据自己的需要进行选择... 目录方法1:集合(set)去重法(最快速)方法2:顺序遍历法(保持顺序)方法3:副本删除法(原地修改)方法4:

Python运行中频繁出现Restart提示的解决办法

《Python运行中频繁出现Restart提示的解决办法》在编程的世界里,遇到各种奇怪的问题是家常便饭,但是,当你的Python程序在运行过程中频繁出现“Restart”提示时,这可能不仅仅是令人头疼... 目录问题描述代码示例无限循环递归调用内存泄漏解决方案1. 检查代码逻辑无限循环递归调用内存泄漏2.

Python中判断对象是否为空的方法

《Python中判断对象是否为空的方法》在Python开发中,判断对象是否为“空”是高频操作,但看似简单的需求却暗藏玄机,从None到空容器,从零值到自定义对象的“假值”状态,不同场景下的“空”需要精... 目录一、python中的“空”值体系二、精准判定方法对比三、常见误区解析四、进阶处理技巧五、性能优化

使用Python构建一个Hexo博客发布工具

《使用Python构建一个Hexo博客发布工具》虽然Hexo的命令行工具非常强大,但对于日常的博客撰写和发布过程,我总觉得缺少一个直观的图形界面来简化操作,下面我们就来看看如何使用Python构建一个... 目录引言Hexo博客系统简介设计需求技术选择代码实现主框架界面设计核心功能实现1. 发布文章2. 加

python logging模块详解及其日志定时清理方式

《pythonlogging模块详解及其日志定时清理方式》:本文主要介绍pythonlogging模块详解及其日志定时清理方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地... 目录python logging模块及日志定时清理1.创建logger对象2.logging.basicCo

Python如何自动生成环境依赖包requirements

《Python如何自动生成环境依赖包requirements》:本文主要介绍Python如何自动生成环境依赖包requirements问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑... 目录生成当前 python 环境 安装的所有依赖包1、命令2、常见问题只生成当前 项目 的所有依赖包1、

如何将Python彻底卸载的三种方法

《如何将Python彻底卸载的三种方法》通常我们在一些软件的使用上有碰壁,第一反应就是卸载重装,所以有小伙伴就问我Python怎么卸载才能彻底卸载干净,今天这篇文章,小编就来教大家如何彻底卸载Pyth... 目录软件卸载①方法:②方法:③方法:清理相关文件夹软件卸载①方法:首先,在安装python时,下

python uv包管理小结

《pythonuv包管理小结》uv是一个高性能的Python包管理工具,它不仅能够高效地处理包管理和依赖解析,还提供了对Python版本管理的支持,本文主要介绍了pythonuv包管理小结,具有一... 目录安装 uv使用 uv 管理 python 版本安装指定版本的 Python查看已安装的 Python