python测试工具: 实现数据源自动核对

2023-12-30 01:52

本文主要是介绍python测试工具: 实现数据源自动核对,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

测试业务需要:

现有A系统作为下游数据系统,上游系统有A1,A2,A3...

需要将A1,A2,A3...的数据达到某条件后(比如:A1系统销售单提交出库成功)自动触发MQ然后再经过数据清洗落到A系统,并将清洗后数据通过特定规则汇总在A系统报表中

现在需要QA同学验证的功能是:

A系统存储数据清洗后的库表(为切片表)有几十个,且前置系统较多,测试工作量也较多

需要核对清洗后A存库数据是否准确

清洗规则:(1)直接取数 (2)拼接取数 (3)映射取数

直接取数字段在2系统表中字段命名规则一致

so,以下测试工具是针对直接取数规则来开发,以便于测试

代码实现步骤:

(1)将表字段,来源系统表和切片表 数据库链接信息,查询字段 作为变量

将这些信息填入input.xlsx 作为入参

(2)读取表字段,根据来源系统表 数据库链接信息,查询字段

查询来源库表,将查询出字段值存储outfbi.xlsx

  (3)读取表字段,根据切片表 数据库链接信息,查询字段

查询切片库表,将查询出字段值存储outods.xlsx

(4)对比outfbi.xlsx,outods.xlsx的字段值

对比后生成result.xlsx文件,新增列校验结果

核对字段值一致校验结果为Success,否则为Fail

代码如下:

入参文件见附件

DbcheckApi.py
import os
import pymysql
import pandas as pd
from openpyxl import load_workbook
from openpyxl.styles import PatternFill
import datetime
import ast"""测试数据路径管理"""
SCRIPTS_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
GENERATECASE_DIR = os.path.join(SCRIPTS_DIR, "dbcheck")
inputDATAS_DIR = os.path.join(GENERATECASE_DIR, "inputdata")
outDATAS_DIR = os.path.join(GENERATECASE_DIR, "outdata")class DbcheckApi():def __init__(self,data):self.inputexcel=dataworkbook = load_workbook(filename=self.inputexcel)sheet = workbook['数据源']# 读取来源表-连接信息sourcedb_connection_info = ast.literal_eval(sheet['B3'].value)odsdb_connection_info = ast.literal_eval(sheet['B4'].value)source_db = sheet['C3'].value.strip()ods_db = sheet['C4'].value.strip()source_queryby = sheet['D3'].value.strip()ods_queryby = sheet['D4'].value.strip()print(sourcedb_connection_info)print(odsdb_connection_info)print(source_db)print(ods_db)print(source_queryby)print(ods_queryby)self.sourcedb = sourcedb_connection_infoself.odsdb = odsdb_connection_infoself.source_db = source_dbself.ods_db = ods_dbself.source_queryby = source_querybyself.ods_queryby = ods_querybydef source_select_db(self):host = self.sourcedb.get('host')port = self.sourcedb.get('port')user = self.sourcedb.get('user')passwd = self.sourcedb.get('passwd')db = self.sourcedb.get('db')if not host or not port or not user or not passwd or not db:error_msg = "连接信息不完整"return {"code": -1, "msg": error_msg, "data": ""}cnnfbi = pymysql.connect(host=host,port=port,user=user,passwd=passwd,db=db)cursor = cnnfbi.cursor()try:# 读取Excel文件df = pd.read_excel(self.inputexcel, sheet_name='Sheet1')# 获取第1列,从第2行开始读取的字段名fields = df.iloc[1:, 0].tolist()print(fields)# 构建查询SQL语句sql = "SELECT {} FROM {} WHERE {}".format(', '.join(fields), self.source_db, self.source_queryby)print(sql)# 执行查询语句cursor.execute(sql)except pymysql.err.OperationalError as e:error_msg = str(e)if "Unknown column" in error_msg:column_name = error_msg.split("'")[1]msg={"code": -1, "msg": f"列字段 {column_name} 在 "+self.source_db+" 表结构中不存在,请检查!", "data": ""}print(msg)return {"code": -1, "msg": f"列字段 {column_name} 在 "+self.source_db+" 表结构中不存在,请检查!", "data": ""}else:return {"code": -1, "msg": error_msg, "data": ""}print(error_msg)# 获取查询结果result = cursor.fetchall()# 关闭游标和连接cursor.close()cnnfbi.close()# 检查查询结果是否为空if not result:return {"code": -1, "msg": f"查询无数据,请检查sql: {sql}", "data": ""}else:# 将结果转换为DataFrame对象df = pd.DataFrame(result, columns=fields)odskey=self.source_db+'表-字段'odsvalue=self.source_db+'表-字段值'# 创建新的DataFrame对象,将字段和对应值放在两列df_new = pd.DataFrame({odskey: fields, odsvalue: df.iloc[0].values})outexcel = os.path.join(outDATAS_DIR,  'outputfbi.xlsx')# 导出结果到Excel文件df_new.to_excel(outexcel, index=False)def ods_select_db(self):host = self.odsdb.get('host')port = self.odsdb.get('port')user = self.odsdb.get('user')passwd = self.odsdb.get('passwd')db = self.odsdb.get('db')if not host or not port or not user or not passwd or not db:raise ValueError("连接信息不完整")cnnfbi = pymysql.connect(host=host,port=port,user=user,passwd=passwd,db=db)cursor = cnnfbi.cursor()try:# 读取Excel文件df = pd.read_excel(self.inputexcel, sheet_name='Sheet1')# 获取第1列,从第2行开始读取的字段名fields = df.iloc[1:, 0].tolist()print(fields)# 构建查询SQL语句sql = "SELECT {} FROM {} WHERE {}".format(', '.join(fields), self.ods_db, self.ods_queryby)print(sql)# 执行查询语句cursor.execute(sql)except pymysql.err.OperationalError as e:error_msg = str(e)if "Unknown column" in error_msg:column_name = error_msg.split("'")[1]return {"code": -1, "msg": f"列 {column_name} 不存在"+self.ods_db+" 表结构中,请检查!", "data": ""}else:return {"code": -1, "msg": error_msg, "data": ""}# 获取查询结果result = cursor.fetchall()# 关闭游标和连接cursor.close()cnnfbi.close()# 将结果转换为DataFrame对象df = pd.DataFrame(result, columns=fields)# 创建新的DataFrame对象,将字段和对应值放在两列odskey=self.ods_db+'表-字段'odsvalue=self.ods_db+'表-字段值'df_new = pd.DataFrame({odskey: fields, odsvalue: df.iloc[0].values})# 导出结果到Excel文件outexcel = os.path.join(outDATAS_DIR,  'outputfms.xlsx')df_new.to_excel(outexcel, index=False)def check_order(self):self.source_select_db()self.ods_select_db()outputfbi = os.path.join(outDATAS_DIR,  'outputfbi.xlsx')outputfms = os.path.join(outDATAS_DIR,  'outputfms.xlsx')df_a = pd.read_excel(outputfbi)df_b = pd.read_excel(outputfms)# 创建新的DataFrame对象用于存储C表的数据df_c = pd.DataFrame()# 将A表的列写入C表for col in df_a.columns:df_c[col] = df_a[col]# 将B表的列���入C表for col in df_b.columns:df_c[col] = df_b[col]odsvalue=self.ods_db+'表-字段值'fbivalue=self.source_db+'表-字段值'# 比对A2和B2列的值,如果不一致,则在第5列写入"校验失败"df_c['校验结果'] = ''for i in range(len(df_c)):if pd.notnull(df_c.at[i, fbivalue]) and pd.notnull(df_c.at[i, odsvalue]):fbivalue_rounded = df_c.at[i, fbivalue]odsvalue_rounded = df_c.at[i, odsvalue]if isinstance(fbivalue_rounded, (int, float)):fbivalue_rounded = round(fbivalue_rounded, 3)elif isinstance(fbivalue_rounded, datetime.datetime):fbivalue_rounded = round(fbivalue_rounded.timestamp(), 3)else:try:fbivalue_rounded = round(float(fbivalue_rounded), 3)except ValueError:passif isinstance(odsvalue_rounded, (int, float)):odsvalue_rounded = round(odsvalue_rounded, 3)elif isinstance(odsvalue_rounded, datetime.datetime):odsvalue_rounded = round(odsvalue_rounded.timestamp(), 3)else:try:odsvalue_rounded = round(float(odsvalue_rounded), 3)except ValueError:passif fbivalue_rounded != odsvalue_rounded:df_c.at[i, '校验结果'] = 'Fail'else:df_c.at[i, '校验结果'] = 'Success'# 将结果写入到C.xlsx文件df_c.to_excel('checkhead_result.xlsx', index=False)# 打开C.xlsx文件并设置背景色book = load_workbook('checkhead_result.xlsx')writer = pd.ExcelWriter('checkhead_result.xlsx', engine='openpyxl')writer.book = book# 获取C.xlsx的工作表sheet_name = 'Sheet1'ws = writer.book[sheet_name]# 设置背景色为红色red_fill = PatternFill(start_color='FFFF0000', end_color='FFFF0000', fill_type='solid')# 遍历校验结果列,将不一致的单元格设置为红色背景for row in ws.iter_rows(min_row=2, min_col=len(df_c.columns), max_row=len(df_c), max_col=len(df_c.columns)):for cell in row:if cell.value == 'Fail':cell.fill = red_fill# 保存Excel文件writer.save()writer.close()if __name__ == '__main__':inputexcel = os.path.join(inputDATAS_DIR,  'input.xlsx')DbcheckApi(inputexcel).check_order()

这篇关于python测试工具: 实现数据源自动核对的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/551355

相关文章

使用Python删除Excel中的行列和单元格示例详解

《使用Python删除Excel中的行列和单元格示例详解》在处理Excel数据时,删除不需要的行、列或单元格是一项常见且必要的操作,本文将使用Python脚本实现对Excel表格的高效自动化处理,感兴... 目录开发环境准备使用 python 删除 Excphpel 表格中的行删除特定行删除空白行删除含指定

Linux下删除乱码文件和目录的实现方式

《Linux下删除乱码文件和目录的实现方式》:本文主要介绍Linux下删除乱码文件和目录的实现方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录linux下删除乱码文件和目录方法1方法2总结Linux下删除乱码文件和目录方法1使用ls -i命令找到文件或目录

SpringBoot+EasyExcel实现自定义复杂样式导入导出

《SpringBoot+EasyExcel实现自定义复杂样式导入导出》这篇文章主要为大家详细介绍了SpringBoot如何结果EasyExcel实现自定义复杂样式导入导出功能,文中的示例代码讲解详细,... 目录安装处理自定义导出复杂场景1、列不固定,动态列2、动态下拉3、自定义锁定行/列,添加密码4、合并

mybatis执行insert返回id实现详解

《mybatis执行insert返回id实现详解》MyBatis插入操作默认返回受影响行数,需通过useGeneratedKeys+keyProperty或selectKey获取主键ID,确保主键为自... 目录 两种方式获取自增 ID:1. ​​useGeneratedKeys+keyProperty(推

Spring Boot集成Druid实现数据源管理与监控的详细步骤

《SpringBoot集成Druid实现数据源管理与监控的详细步骤》本文介绍如何在SpringBoot项目中集成Druid数据库连接池,包括环境搭建、Maven依赖配置、SpringBoot配置文件... 目录1. 引言1.1 环境准备1.2 Druid介绍2. 配置Druid连接池3. 查看Druid监控

Python通用唯一标识符模块uuid使用案例详解

《Python通用唯一标识符模块uuid使用案例详解》Pythonuuid模块用于生成128位全局唯一标识符,支持UUID1-5版本,适用于分布式系统、数据库主键等场景,需注意隐私、碰撞概率及存储优... 目录简介核心功能1. UUID版本2. UUID属性3. 命名空间使用场景1. 生成唯一标识符2. 数

Linux在线解压jar包的实现方式

《Linux在线解压jar包的实现方式》:本文主要介绍Linux在线解压jar包的实现方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录linux在线解压jar包解压 jar包的步骤总结Linux在线解压jar包在 Centos 中解压 jar 包可以使用 u

Python办公自动化实战之打造智能邮件发送工具

《Python办公自动化实战之打造智能邮件发送工具》在数字化办公场景中,邮件自动化是提升工作效率的关键技能,本文将演示如何使用Python的smtplib和email库构建一个支持图文混排,多附件,多... 目录前言一、基础配置:搭建邮件发送框架1.1 邮箱服务准备1.2 核心库导入1.3 基础发送函数二、

c++ 类成员变量默认初始值的实现

《c++类成员变量默认初始值的实现》本文主要介绍了c++类成员变量默认初始值,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录C++类成员变量初始化c++类的变量的初始化在C++中,如果使用类成员变量时未给定其初始值,那么它将被

Python包管理工具pip的升级指南

《Python包管理工具pip的升级指南》本文全面探讨Python包管理工具pip的升级策略,从基础升级方法到高级技巧,涵盖不同操作系统环境下的最佳实践,我们将深入分析pip的工作原理,介绍多种升级方... 目录1. 背景介绍1.1 目的和范围1.2 预期读者1.3 文档结构概述1.4 术语表1.4.1 核