电信保温杯笔记——《统计学习方法(第二版)——李航》第11章 条件随机场

本文主要是介绍电信保温杯笔记——《统计学习方法(第二版)——李航》第11章 条件随机场,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

电信保温杯笔记——《统计学习方法(第二版)——李航》第11章 条件随机场

  • 论文
  • 介绍
  • 概率无向图模型
    • 图模型
    • 马尔科夫性
      • 成对马尔科夫性
      • 局部马尔科夫性
      • 全局马尔科夫性
    • 概率无向图的定义
    • 概率无向图模型的因子分解
      • 团与最大团
        • 定义
        • 例子
      • 因子分解
  • 条件随机场
    • 条件随机场的定义
    • 线性链条件随机场
    • 条件随机场的形式
      • 参数化形式
        • 例子
      • 简化形式
      • 矩阵形式
        • 例子
  • 条件随机场的概率计算
    • 向前-向后算法
    • 概率计算
    • 期望计算
    • 预测算法
      • 步骤
      • 例子
  • 条件随机场的参数估计
    • 改进的迭代尺度法
      • 步骤
      • 算法S
      • 算法T
    • 拟牛顿法
      • 步骤
  • 本章概要
  • 备注
  • 相关视频
  • 相关的笔记

论文

CRF算法:《Conditional Random Fields: Probabilistic Models for Segmenting and Labeling Sequence Data》

介绍

电信保温杯笔记——《统计学习方法(第二版)——李航》
本文是对原书的精读,会有大量原书的截图,同时对书上不详尽的地方进行细致解读与改写。

条件随机场(conditional random field)是给定一组输入随机变量 X X X 条件下另一组输出随机变量 Y Y Y 的条件概率分布模型 P ( Y ∣ X ) P(Y|X) P(YX),其特点是假设输出随机变量 Y Y Y 构成马尔可夫随机场。

在这里插入图片描述

马尔可夫随机场又称为概率无向图模型。故下面介绍概率无向图模型。

概率无向图模型

首先介绍图模型。

图模型

在这里插入图片描述

具有马尔科夫性的无向图,就是概率无向图,下面介绍马尔科夫性。

马尔科夫性

在这里插入图片描述

成对马尔科夫性

在这里插入图片描述

局部马尔科夫性

在这里插入图片描述

全局马尔科夫性

在这里插入图片描述

概率无向图的定义

在这里插入图片描述

概率无向图模型的因子分解

在这里插入图片描述

首先给出无向图中的团与最大团的定义。

团与最大团

定义

在这里插入图片描述

例子

在这里插入图片描述

因子分解

在这里插入图片描述

总结为如下定理
在这里插入图片描述

了解了马尔可夫随机场后,下面介绍条件随机场。条件随机场(conditional random field)是给定随机变量 X X X 条件下,随机变量 Y Y Y 的马尔可夫随机场。

条件随机场

在这里插入图片描述

条件随机场的定义

在这里插入图片描述

它想说的是, v v v 点状态的预测,只与跟它连接的节点的状态有关,与跟它没有连接的节点的状态无关,而隐马尔可夫模型的假设 v v v 点状态的预测只与它的前一个节点的状态有关,这是两者的不同之处。
在这里插入图片描述

线性链条件随机场

在这里插入图片描述

它跟条件随机场的定义一致,只不过节点的结构变成了链表,故与条件随机场的定义中的节点 v v v 相连的节点只有前后2个。

条件随机场的形式

下面是条件随机场 P ( Y ∣ X ) P(Y|X) P(YX) 公式化的各种表达形式。

参数化形式

就是条件概率写成 P ( Y ∣ X ) P(Y|X) P(YX) 具体公式。
在这里插入图片描述

其中 y = ( y 1 , y 2 , ⋯ , y n ) y = (y_1, y_2, \cdots , y_n) y=(y1,y2,,yn)
在这里插入图片描述

例子

在这里插入图片描述

例子中 P ( y ∣ x ) = exp ⁡ [ ∑ i = 1 n + 1 ( ∑ k = 1 5 λ k t k ( y i − 1 , y i , x , i ) + ∑ k = 1 4 μ k s k ( y i , x , i ) ) ] P(y | x) = \exp \left[ \sum\limits_{i = 1}^{n+1} \left( \sum\limits_{k = 1}^{5} \lambda_k t_k(y_{i-1} , y_i , x , i ) + \sum\limits_{k = 1}^{4} \mu_k s_k(y_i , x , i ) \right) \right] P(yx)=exp[i=1n+1(k=15λktk(yi1,yi,x,i)+k=14μksk(yi,x,i))] 才与下文矩阵形式书写一致。

简化形式

下面就是把上面公式exp里面的内容进行合并简化。
在这里插入图片描述
在这里插入图片描述

矩阵形式

在这里插入图片描述

上式方括号是矩阵元素的表达式,即 A = [ a i j ] A = [a_{ij}] A=[aij]
y i y_i yi 共有 m m m 个状态取值, i = 1 , ⋯ , n i = 1,\cdots , n i=1,,n,所以矩阵是 m m m 阶的。因为 y 0 y_0 y0 y n + 1 y_{n+1} yn+1 只有一种取值,而矩阵 M 1 , M n + 1 M_1,M_{n+1} M1,Mn+1 又希望保持矩阵形式,故 M 1 M_1 M1 除第一行以外都是0, M n + 1 M_{n+1} Mn+1 除第一列以外都是0。
在这里插入图片描述

矩阵 [ M 1 ( x ) M 2 ( x ) ⋯ M n + 1 ( x ) ] [M_1(x)M_2(x) \cdots M_{n+1}(x)] [M1(x)M2(x)Mn+1(x)] 只有左上角元素不为零。

例子

在这里插入图片描述

以上是模型的介绍,下面是模型的运用与参数估计方法。

条件随机场的概率计算

在这里插入图片描述

向前-向后算法

电信保温杯笔记——《统计学习方法(第二版)——李航》第10章 隐马尔可夫模型中有向前算法和向后算法的笔记。

在这里插入图片描述

概率计算

在这里插入图片描述

期望计算

在这里插入图片描述

预测算法

在这里插入图片描述

电信保温杯笔记——《统计学习方法(第二版)——李航》第10章 隐马尔可夫模型中有维特比算法的笔记。

在这里插入图片描述

在这里插入图片描述

步骤

在这里插入图片描述

例子

在这里插入图片描述

条件随机场的参数估计

在这里插入图片描述

改进的迭代尺度法

电信保温杯笔记——《统计学习方法(第二版)——李航》第6章 逻辑斯谛回归与最大熵模型中有关于改进的迭代尺度法的笔记。

这是一种对数似然函数的参数估计的解法。
在这里插入图片描述
在这里插入图片描述

步骤

在这里插入图片描述

算法S

在这里插入图片描述

算法T

在这里插入图片描述

拟牛顿法

在这里插入图片描述

步骤

在这里插入图片描述

本章概要

在这里插入图片描述

备注

求解的算法没有细看,但用的都是前几章的算法。

相关视频

相关的笔记

hktxt /Learn-Statistical-Learning-Method

这篇关于电信保温杯笔记——《统计学习方法(第二版)——李航》第11章 条件随机场的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/550382

相关文章

MyBatis与其使用方法示例详解

《MyBatis与其使用方法示例详解》MyBatis是一个支持自定义SQL的持久层框架,通过XML文件实现SQL配置和数据映射,简化了JDBC代码的编写,本文给大家介绍MyBatis与其使用方法讲解,... 目录ORM缺优分析MyBATisMyBatis的工作流程MyBatis的基本使用环境准备MyBati

Nginx中location实现多条件匹配的方法详解

《Nginx中location实现多条件匹配的方法详解》在Nginx中,location指令用于匹配请求的URI,虽然location本身是基于单一匹配规则的,但可以通过多种方式实现多个条件的匹配逻辑... 目录1. 概述2. 实现多条件匹配的方式2.1 使用多个 location 块2.2 使用正则表达式

前端bug调试的方法技巧及常见错误

《前端bug调试的方法技巧及常见错误》:本文主要介绍编程中常见的报错和Bug,以及调试的重要性,调试的基本流程是通过缩小范围来定位问题,并给出了推测法、删除代码法、console调试和debugg... 目录调试基本流程调试方法排查bug的两大技巧如何看控制台报错前端常见错误取值调用报错资源引入错误解析错误

Springboot控制反转与Bean对象的方法

《Springboot控制反转与Bean对象的方法》文章介绍了SpringBoot中的控制反转(IoC)概念,描述了IoC容器如何管理Bean的生命周期和依赖关系,它详细讲解了Bean的注册过程,包括... 目录1 控制反转1.1 什么是控制反转1.2 SpringBoot中的控制反转2 Ioc容器对Bea

C++实现回文串判断的两种高效方法

《C++实现回文串判断的两种高效方法》文章介绍了两种判断回文串的方法:解法一通过创建新字符串来处理,解法二在原字符串上直接筛选判断,两种方法都使用了双指针法,文中通过代码示例讲解的非常详细,需要的朋友... 目录一、问题描述示例二、解法一:将字母数字连接到新的 string思路代码实现代码解释复杂度分析三、

mysql8.0无备份通过idb文件恢复数据的方法、idb文件修复和tablespace id不一致处理

《mysql8.0无备份通过idb文件恢复数据的方法、idb文件修复和tablespaceid不一致处理》文章描述了公司服务器断电后数据库故障的过程,作者通过查看错误日志、重新初始化数据目录、恢复备... 周末突然接到一位一年多没联系的妹妹打来电话,“刘哥,快来救救我”,我脑海瞬间冒出妙瓦底,电信火苲马扁.

SpringBoot使用Jasypt对YML文件配置内容加密的方法(数据库密码加密)

《SpringBoot使用Jasypt对YML文件配置内容加密的方法(数据库密码加密)》本文介绍了如何在SpringBoot项目中使用Jasypt对application.yml文件中的敏感信息(如数... 目录SpringBoot使用Jasypt对YML文件配置内容进行加密(例:数据库密码加密)前言一、J

Spring Boot 中正确地在异步线程中使用 HttpServletRequest的方法

《SpringBoot中正确地在异步线程中使用HttpServletRequest的方法》文章讨论了在SpringBoot中如何在异步线程中正确使用HttpServletRequest的问题,... 目录前言一、问题的来源:为什么异步线程中无法访问 HttpServletRequest?1. 请求上下文与线

解读为什么@Autowired在属性上被警告,在setter方法上不被警告问题

《解读为什么@Autowired在属性上被警告,在setter方法上不被警告问题》在Spring开发中,@Autowired注解常用于实现依赖注入,它可以应用于类的属性、构造器或setter方法上,然... 目录1. 为什么 @Autowired 在属性上被警告?1.1 隐式依赖注入1.2 IDE 的警告:

SpringBoot快速接入OpenAI大模型的方法(JDK8)

《SpringBoot快速接入OpenAI大模型的方法(JDK8)》本文介绍了如何使用AI4J快速接入OpenAI大模型,并展示了如何实现流式与非流式的输出,以及对函数调用的使用,AI4J支持JDK8... 目录使用AI4J快速接入OpenAI大模型介绍AI4J-github快速使用创建SpringBoot