电信保温杯笔记——《统计学习方法(第二版)——李航》第11章 条件随机场

本文主要是介绍电信保温杯笔记——《统计学习方法(第二版)——李航》第11章 条件随机场,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

电信保温杯笔记——《统计学习方法(第二版)——李航》第11章 条件随机场

  • 论文
  • 介绍
  • 概率无向图模型
    • 图模型
    • 马尔科夫性
      • 成对马尔科夫性
      • 局部马尔科夫性
      • 全局马尔科夫性
    • 概率无向图的定义
    • 概率无向图模型的因子分解
      • 团与最大团
        • 定义
        • 例子
      • 因子分解
  • 条件随机场
    • 条件随机场的定义
    • 线性链条件随机场
    • 条件随机场的形式
      • 参数化形式
        • 例子
      • 简化形式
      • 矩阵形式
        • 例子
  • 条件随机场的概率计算
    • 向前-向后算法
    • 概率计算
    • 期望计算
    • 预测算法
      • 步骤
      • 例子
  • 条件随机场的参数估计
    • 改进的迭代尺度法
      • 步骤
      • 算法S
      • 算法T
    • 拟牛顿法
      • 步骤
  • 本章概要
  • 备注
  • 相关视频
  • 相关的笔记

论文

CRF算法:《Conditional Random Fields: Probabilistic Models for Segmenting and Labeling Sequence Data》

介绍

电信保温杯笔记——《统计学习方法(第二版)——李航》
本文是对原书的精读,会有大量原书的截图,同时对书上不详尽的地方进行细致解读与改写。

条件随机场(conditional random field)是给定一组输入随机变量 X X X 条件下另一组输出随机变量 Y Y Y 的条件概率分布模型 P ( Y ∣ X ) P(Y|X) P(YX),其特点是假设输出随机变量 Y Y Y 构成马尔可夫随机场。

在这里插入图片描述

马尔可夫随机场又称为概率无向图模型。故下面介绍概率无向图模型。

概率无向图模型

首先介绍图模型。

图模型

在这里插入图片描述

具有马尔科夫性的无向图,就是概率无向图,下面介绍马尔科夫性。

马尔科夫性

在这里插入图片描述

成对马尔科夫性

在这里插入图片描述

局部马尔科夫性

在这里插入图片描述

全局马尔科夫性

在这里插入图片描述

概率无向图的定义

在这里插入图片描述

概率无向图模型的因子分解

在这里插入图片描述

首先给出无向图中的团与最大团的定义。

团与最大团

定义

在这里插入图片描述

例子

在这里插入图片描述

因子分解

在这里插入图片描述

总结为如下定理
在这里插入图片描述

了解了马尔可夫随机场后,下面介绍条件随机场。条件随机场(conditional random field)是给定随机变量 X X X 条件下,随机变量 Y Y Y 的马尔可夫随机场。

条件随机场

在这里插入图片描述

条件随机场的定义

在这里插入图片描述

它想说的是, v v v 点状态的预测,只与跟它连接的节点的状态有关,与跟它没有连接的节点的状态无关,而隐马尔可夫模型的假设 v v v 点状态的预测只与它的前一个节点的状态有关,这是两者的不同之处。
在这里插入图片描述

线性链条件随机场

在这里插入图片描述

它跟条件随机场的定义一致,只不过节点的结构变成了链表,故与条件随机场的定义中的节点 v v v 相连的节点只有前后2个。

条件随机场的形式

下面是条件随机场 P ( Y ∣ X ) P(Y|X) P(YX) 公式化的各种表达形式。

参数化形式

就是条件概率写成 P ( Y ∣ X ) P(Y|X) P(YX) 具体公式。
在这里插入图片描述

其中 y = ( y 1 , y 2 , ⋯ , y n ) y = (y_1, y_2, \cdots , y_n) y=(y1,y2,,yn)
在这里插入图片描述

例子

在这里插入图片描述

例子中 P ( y ∣ x ) = exp ⁡ [ ∑ i = 1 n + 1 ( ∑ k = 1 5 λ k t k ( y i − 1 , y i , x , i ) + ∑ k = 1 4 μ k s k ( y i , x , i ) ) ] P(y | x) = \exp \left[ \sum\limits_{i = 1}^{n+1} \left( \sum\limits_{k = 1}^{5} \lambda_k t_k(y_{i-1} , y_i , x , i ) + \sum\limits_{k = 1}^{4} \mu_k s_k(y_i , x , i ) \right) \right] P(yx)=exp[i=1n+1(k=15λktk(yi1,yi,x,i)+k=14μksk(yi,x,i))] 才与下文矩阵形式书写一致。

简化形式

下面就是把上面公式exp里面的内容进行合并简化。
在这里插入图片描述
在这里插入图片描述

矩阵形式

在这里插入图片描述

上式方括号是矩阵元素的表达式,即 A = [ a i j ] A = [a_{ij}] A=[aij]
y i y_i yi 共有 m m m 个状态取值, i = 1 , ⋯ , n i = 1,\cdots , n i=1,,n,所以矩阵是 m m m 阶的。因为 y 0 y_0 y0 y n + 1 y_{n+1} yn+1 只有一种取值,而矩阵 M 1 , M n + 1 M_1,M_{n+1} M1,Mn+1 又希望保持矩阵形式,故 M 1 M_1 M1 除第一行以外都是0, M n + 1 M_{n+1} Mn+1 除第一列以外都是0。
在这里插入图片描述

矩阵 [ M 1 ( x ) M 2 ( x ) ⋯ M n + 1 ( x ) ] [M_1(x)M_2(x) \cdots M_{n+1}(x)] [M1(x)M2(x)Mn+1(x)] 只有左上角元素不为零。

例子

在这里插入图片描述

以上是模型的介绍,下面是模型的运用与参数估计方法。

条件随机场的概率计算

在这里插入图片描述

向前-向后算法

电信保温杯笔记——《统计学习方法(第二版)——李航》第10章 隐马尔可夫模型中有向前算法和向后算法的笔记。

在这里插入图片描述

概率计算

在这里插入图片描述

期望计算

在这里插入图片描述

预测算法

在这里插入图片描述

电信保温杯笔记——《统计学习方法(第二版)——李航》第10章 隐马尔可夫模型中有维特比算法的笔记。

在这里插入图片描述

在这里插入图片描述

步骤

在这里插入图片描述

例子

在这里插入图片描述

条件随机场的参数估计

在这里插入图片描述

改进的迭代尺度法

电信保温杯笔记——《统计学习方法(第二版)——李航》第6章 逻辑斯谛回归与最大熵模型中有关于改进的迭代尺度法的笔记。

这是一种对数似然函数的参数估计的解法。
在这里插入图片描述
在这里插入图片描述

步骤

在这里插入图片描述

算法S

在这里插入图片描述

算法T

在这里插入图片描述

拟牛顿法

在这里插入图片描述

步骤

在这里插入图片描述

本章概要

在这里插入图片描述

备注

求解的算法没有细看,但用的都是前几章的算法。

相关视频

相关的笔记

hktxt /Learn-Statistical-Learning-Method

这篇关于电信保温杯笔记——《统计学习方法(第二版)——李航》第11章 条件随机场的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/550382

相关文章

Python判断for循环最后一次的6种方法

《Python判断for循环最后一次的6种方法》在Python中,通常我们不会直接判断for循环是否正在执行最后一次迭代,因为Python的for循环是基于可迭代对象的,它不知道也不关心迭代的内部状态... 目录1.使用enuhttp://www.chinasem.cnmerate()和len()来判断for

Java循环创建对象内存溢出的解决方法

《Java循环创建对象内存溢出的解决方法》在Java中,如果在循环中不当地创建大量对象而不及时释放内存,很容易导致内存溢出(OutOfMemoryError),所以本文给大家介绍了Java循环创建对象... 目录问题1. 解决方案2. 示例代码2.1 原始版本(可能导致内存溢出)2.2 修改后的版本问题在

四种Flutter子页面向父组件传递数据的方法介绍

《四种Flutter子页面向父组件传递数据的方法介绍》在Flutter中,如果父组件需要调用子组件的方法,可以通过常用的四种方式实现,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录方法 1:使用 GlobalKey 和 State 调用子组件方法方法 2:通过回调函数(Callb

一文详解Python中数据清洗与处理的常用方法

《一文详解Python中数据清洗与处理的常用方法》在数据处理与分析过程中,缺失值、重复值、异常值等问题是常见的挑战,本文总结了多种数据清洗与处理方法,文中的示例代码简洁易懂,有需要的小伙伴可以参考下... 目录缺失值处理重复值处理异常值处理数据类型转换文本清洗数据分组统计数据分箱数据标准化在数据处理与分析过

Java中Object类的常用方法小结

《Java中Object类的常用方法小结》JavaObject类是所有类的父类,位于java.lang包中,本文为大家整理了一些Object类的常用方法,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1. public boolean equals(Object obj)2. public int ha

golang1.23版本之前 Timer Reset方法无法正确使用

《golang1.23版本之前TimerReset方法无法正确使用》在Go1.23之前,使用`time.Reset`函数时需要先调用`Stop`并明确从timer的channel中抽取出东西,以避... 目录golang1.23 之前 Reset ​到底有什么问题golang1.23 之前到底应该如何正确的

Vue项目中Element UI组件未注册的问题原因及解决方法

《Vue项目中ElementUI组件未注册的问题原因及解决方法》在Vue项目中使用ElementUI组件库时,开发者可能会遇到一些常见问题,例如组件未正确注册导致的警告或错误,本文将详细探讨这些问题... 目录引言一、问题背景1.1 错误信息分析1.2 问题原因二、解决方法2.1 全局引入 Element

详解如何在React中执行条件渲染

《详解如何在React中执行条件渲染》在现代Web开发中,React作为一种流行的JavaScript库,为开发者提供了一种高效构建用户界面的方式,条件渲染是React中的一个关键概念,本文将深入探讨... 目录引言什么是条件渲染?基础示例使用逻辑与运算符(&&)使用条件语句列表中的条件渲染总结引言在现代

Python调用另一个py文件并传递参数常见的方法及其应用场景

《Python调用另一个py文件并传递参数常见的方法及其应用场景》:本文主要介绍在Python中调用另一个py文件并传递参数的几种常见方法,包括使用import语句、exec函数、subproce... 目录前言1. 使用import语句1.1 基本用法1.2 导入特定函数1.3 处理文件路径2. 使用ex

Oracle查询优化之高效实现仅查询前10条记录的方法与实践

《Oracle查询优化之高效实现仅查询前10条记录的方法与实践》:本文主要介绍Oracle查询优化之高效实现仅查询前10条记录的相关资料,包括使用ROWNUM、ROW_NUMBER()函数、FET... 目录1. 使用 ROWNUM 查询2. 使用 ROW_NUMBER() 函数3. 使用 FETCH FI