七套Python库快速提升您项目的代码可维护性

2023-12-29 07:08

本文主要是介绍七套Python库快速提升您项目的代码可维护性,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

 

当软件项目进入“维护模式”时,原本的代码可读性与编码标准往往很难得到保证。(当然,这些标准在软件项目建立之初就不容易坚持实施。)但必须强调的是,在代码库中保持样式与测试标准的一致性,正是降低维护负担的重要前提。只有这样,我们才能确保未来的开发人员得以快速了解新的情况,并随着时间推移切实保证项目与应用程序的健康状况。

保护项目未来可维护性的一种理想方式,在于利用外部库检查您的代码运行状况。以下是目前开发人员最喜爱的的代码梳理库,它们能够以强制方式执行一致性样式,并确保项目在成熟之后仍具备可接受的测试覆盖率。

检查您的代码样式

PEP 8是一套Python代码样式指南,其为行长度、缩进、多行表达式以及命名约定等内容提供重要的执行规则。当然,您的团队也许拥有自己的样式规则,且其与PEP 8略有不同。

凭借代码样式指南都拥有同样的目标——在代码库中强制实施一致的标准,从而使其更具可读性并降低维护难度。在这方面,以下三套库能够帮助大家高效改善代码质量。

1. Pylint

Pylint 是一套用于检查PEP 8样式违规与常见错误的库。它能够与多种高人气编辑器及IDE良好集成,亦可通过命令行加以运行。

您可以运行pip install pylint命令以进行安装。

要通过命令行使用Pylint,您需要运行 pylint [options] path/to/dir or pylint [options] path/to/module.py。Pylint将向控制台输出关于样式违规以及其他错误警告。

大家也可以利用 pylintrc配置文件自定义Pylint的错误检查。

2. Flake8

Flake8是一款“Python工具,可将PEP 8、Pyflakes(类似于Pylint)、McCabe(代码复杂性检查器)以及其他第三方插件加以结合,用以检查Python代码中的样式与质量。”

要使用Flake8,您需要运行 pip install flake8。而后,运行flake8 [options] path/to/dir or flake8 [options] path/to/module.py 查看相关错误与警告信息。

与Pylint类似,Flake8也允许用户对配置文件的检查内容进行自定义,其中包含非常清晰的文档,例如一些实用的commit hook,用以自动检查开发流程中的代码片段。

Flake8能够集成各类流行编辑器与IDE,但文档当中通常并未提及相关指令。要将Flake8与您喜爱的编辑器或IDE进行集成,请在线搜索相关插件(例如 Flake8 plugin for Sublime Text)。

3. Isort

Isort是一套库,能够按字母顺序对您的导入内容进行排序并将其拆分为适当部分(例如标准库导入、第三方库导入、来自您自有项目的导入等)。这将提升代码可读性并在模块中包含大量导入内容时降低查找难度。

要安装isort,您需要运行 pip install isort,而后使用 isort path/to/module.py命令加以运行。关于更多配置选项,请参阅 说明文档。例如,您可以通过isort.cfg文件配置isort如何处理来自某套库的多行导入代码。

与Falke8及Pylint一样,isort同时提供多款插件以集成各类流行编辑器及IDE。

代码样式外包

需要强调的是,在命令行中手动为需要变更的各个文件进行代码梳理是一项痛苦的工作,大家也可能并不喜欢特定插件在IDE中的运行方式。

此外,您的同事可能更倾向于利用不同的插件或者干脆不配合任何插件使用自己喜爱的编辑器; 或者您自己可能不想投入太多心力进行代码梳理并根据警告内容做出调整。随着时间的推移,这一切都可能令您的共享代码库变得混乱且难以阅读。

在这方面,一大理想解决方案是利用库自动对代码进行重新格式化,从而直接为您传递PEP 8内容。这里我们推荐的三套库都拥有不同级别的自定义能力,亦会以不同的默认方式进行代码格式化。

这些默认方式各有优劣,因此大家可能需要像使用Pylint以及Flake8那样对其进行测试,看看哪些能够提供最有效的自定义选项,又有哪些不可更改的默认值比较符合您的要求。

4. Autopep8

Autopep8 能够自动对您指定的模块内的代码进行格式化。它会进行重新缩进、修复缩进、删除不必要的空格,同时重构常见的比较错误(例如布尔值与None)。感兴趣的朋友可以点击此处查看其文档中的完整更正列表。

要安装Autopep8,您需要运行pip install --upgrade autopep8。要对代码进行重新格式化,需要运行autopep8 --in-place --aggressive --aggressive <filename>。其中的aggressive标记(及其数量)表示您希望在代码样式上为autopep8提供多少控制权空间。您可以点击此处了解关于aggressive选项的更多细节信息。

5. Yapf

Yapf 是另一种代码重新格式化选项,其提供自己的配置选项列表。与autopep8不同,yapf不仅能够解决PEP 8违规问题,同时亦会重新格式化那些并不违反特定PEP 8规则的代码——包括不符合样式一致性或者存在其他可读性问题的部分,从而进一步提升代码可维护性。

要安装yapf,您需要运行 pip install yapf。要对代码进行重新格式化,需要运行 yapf [options] path/to/dir 或者yapf [options] path/to/module.py。您可以点击此处查看自定义选项的完整列表。

6. Black

Black在代码重新格式化领域可谓后起之秀。它与autopep8以及Yapf颇为相似,但又有着自己的特点。重点在于,Black提供的自定义选项非常有限。换言之,其基本思路是用户不应对代码样式做出决定,而应将决定权交给Black。当然,大家也可以查看有限的自定义选项,并将其存储在配置文件当中。

Black要求配合Python 3.6+使用,但亦可对Python 2代码进行格式化。要使用Black,您需要运行 pip install black。要对代码进行格式化,您需要运行: black path/to/dir 或者 black path/to/module.py。

检查测试覆盖率

在编写测试的过程中,大家需要确保其能够对代码库中的新代码进行测试,同时不致降低您的测试覆盖率。尽管测试覆盖率百分比并非衡量测试有效性与充分性的惟一指标,但其无疑是确保项目遵循基本测试标准的重要方法之一。为了衡量测试覆盖率,我们向您推荐Coverage。

7. Coverage

Coverage拥有多个选项,可用于向您报告测试覆盖率,具体包括将结果输出至控制台或HTML页面,并指示哪些行号存在测试覆盖缺失。您可以设置配置文件以自定义Coverage的检查内容,并降低其运行难度。

要安装Coverage,您需要运行pip install coverage。要运行程序并查看其输出结果,需要运行 coverage run [path/to/module.py] [args],而后查看程序的输出结果即可。要获取哪些代码行未被测试覆盖,需要运行 coverage report -m。

持续集成工具

持续集成(简称CI)是您可以运行的一系列流程,用于在代码合并与部署之前自动检查梳理错误并给出测试覆盖率的最小值。目前有多种免费或付费工具能够自动完成上述目标,这里我们就不一一赘述了。不过考虑到持续集成是实现代码可读性与可维护性的重要环节,这里向大家推荐两种一般性持续集成工具:Travis CI 与 Jenkins。

更多Python视频、源码、资料加群683380553免费获取

原文标题:7 Python libraries for more maintainable code,作者:Jeff Triplett

这篇关于七套Python库快速提升您项目的代码可维护性的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/548714

相关文章

使用Python删除Excel中的行列和单元格示例详解

《使用Python删除Excel中的行列和单元格示例详解》在处理Excel数据时,删除不需要的行、列或单元格是一项常见且必要的操作,本文将使用Python脚本实现对Excel表格的高效自动化处理,感兴... 目录开发环境准备使用 python 删除 Excphpel 表格中的行删除特定行删除空白行删除含指定

Python通用唯一标识符模块uuid使用案例详解

《Python通用唯一标识符模块uuid使用案例详解》Pythonuuid模块用于生成128位全局唯一标识符,支持UUID1-5版本,适用于分布式系统、数据库主键等场景,需注意隐私、碰撞概率及存储优... 目录简介核心功能1. UUID版本2. UUID属性3. 命名空间使用场景1. 生成唯一标识符2. 数

Python办公自动化实战之打造智能邮件发送工具

《Python办公自动化实战之打造智能邮件发送工具》在数字化办公场景中,邮件自动化是提升工作效率的关键技能,本文将演示如何使用Python的smtplib和email库构建一个支持图文混排,多附件,多... 目录前言一、基础配置:搭建邮件发送框架1.1 邮箱服务准备1.2 核心库导入1.3 基础发送函数二、

Python包管理工具pip的升级指南

《Python包管理工具pip的升级指南》本文全面探讨Python包管理工具pip的升级策略,从基础升级方法到高级技巧,涵盖不同操作系统环境下的最佳实践,我们将深入分析pip的工作原理,介绍多种升级方... 目录1. 背景介绍1.1 目的和范围1.2 预期读者1.3 文档结构概述1.4 术语表1.4.1 核

PowerShell中15个提升运维效率关键命令实战指南

《PowerShell中15个提升运维效率关键命令实战指南》作为网络安全专业人员的必备技能,PowerShell在系统管理、日志分析、威胁检测和自动化响应方面展现出强大能力,下面我们就来看看15个提升... 目录一、PowerShell在网络安全中的战略价值二、网络安全关键场景命令实战1. 系统安全基线核查

基于Python实现一个图片拆分工具

《基于Python实现一个图片拆分工具》这篇文章主要为大家详细介绍了如何基于Python实现一个图片拆分工具,可以根据需要的行数和列数进行拆分,感兴趣的小伙伴可以跟随小编一起学习一下... 简单介绍先自己选择输入的图片,默认是输出到项目文件夹中,可以自己选择其他的文件夹,选择需要拆分的行数和列数,可以通过

Python中反转字符串的常见方法小结

《Python中反转字符串的常见方法小结》在Python中,字符串对象没有内置的反转方法,然而,在实际开发中,我们经常会遇到需要反转字符串的场景,比如处理回文字符串、文本加密等,因此,掌握如何在Pyt... 目录python中反转字符串的方法技术背景实现步骤1. 使用切片2. 使用 reversed() 函

Python中将嵌套列表扁平化的多种实现方法

《Python中将嵌套列表扁平化的多种实现方法》在Python编程中,我们常常会遇到需要将嵌套列表(即列表中包含列表)转换为一个一维的扁平列表的需求,本文将给大家介绍了多种实现这一目标的方法,需要的朋... 目录python中将嵌套列表扁平化的方法技术背景实现步骤1. 使用嵌套列表推导式2. 使用itert

使用Docker构建Python Flask程序的详细教程

《使用Docker构建PythonFlask程序的详细教程》在当今的软件开发领域,容器化技术正变得越来越流行,而Docker无疑是其中的佼佼者,本文我们就来聊聊如何使用Docker构建一个简单的Py... 目录引言一、准备工作二、创建 Flask 应用程序三、创建 dockerfile四、构建 Docker

Python使用vllm处理多模态数据的预处理技巧

《Python使用vllm处理多模态数据的预处理技巧》本文深入探讨了在Python环境下使用vLLM处理多模态数据的预处理技巧,我们将从基础概念出发,详细讲解文本、图像、音频等多模态数据的预处理方法,... 目录1. 背景介绍1.1 目的和范围1.2 预期读者1.3 文档结构概述1.4 术语表1.4.1 核