Resnet50网络的应用—抑郁症诊断

2023-12-29 06:50

本文主要是介绍Resnet50网络的应用—抑郁症诊断,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

写在前边

本人研究生阶段的研究内容为抑郁症诊断,最近一直在想搭建件简单有效的网络,提升自己编码能力的同时,推动科研的进展。本文是总结了最近两周学习的论文中,应用到Resnet_50网络的,在此进行整理和总结。欢迎相同方向的同学交流学习。

正文

相比于之前的思路,本部分选择的是三个论文,都是借助Resnet_50网络作为核心网路的,我觉得这个方向是可以进行相应的学习和研究的。


论文名称:DEPRESSION DETECTION BASED ON DEEP DISTRIBUTION LEARNING

数据集:AVEC2013、AVEC2014

创新点:本文的出发角度是很好的,解决现在部分模型中,损失函数是基于标记的面部图像,没有明确地探讨所有面部图像与抑郁水平之间的序数关系。通过对整个个体图片的完全整理,实现对所有图对相应的抑郁分数的对应,从而降低误差。

整体结构:

整体模型图如下图:

本文将抑郁症诊断问题作为分类问题处理的,整体以一个样本的所有图片作为一个样本,对应一个label。

本文提出  expectation loss 来描述抑郁分数的分布,首先针对输入的 i 个图片Xi,Yi为对应所以的label,Zi表示系统的输出抑郁症分数,计算获取概率,

为了求得分布,先计算下期望值,其中j表示label:

 

期望损失函数就可以表示为,其中M为bath_size:

实验部分:

 预处理:1>采样,AVEC2013每100帧取一帧,AVEC2014每10帧取一帧;2>人脸对齐裁剪MTCNN工具

 模型:在VGG FACE 上训练过的Resnet_50 

 评价标准 : MSE和RMS

结果:结果效果相比于之前的模型还是有很大的进步的,这也鼓励大家从整体的角度来考虑诊断的问题。

 现阶段思路的问题:实验中,作者是将一个vedio裁剪的图片一次送入到网络中吗?图片特别多,硬件不支持的问题是怎么处理的那?


论文名称:Learning content-adaptive feature pooling for facial depression recognition in videos

数据集:AVEC2014

创新点:作者发现,针对每个图片,模型认定其对最终结果的影响权重都是一样的。显然,这样是存在问题的,因为有的帧图片中的姿势、角度并不适合系统进行相应分数诊断。所以,作者借助memory attention mechanism 来对帧图片进行权重的分配,以使得效果较好的图片对结果起到主导作用。

整体结构:

从整体来看,网络是分为两部分:Resnet_50网络提取图片特征,级联的两层attention网络进行权重分配,最后的全连层输出抑郁诊断结果,网络整体结构如下图:

通过Resnet_50网络的到的特征,然后希望通过attention机制得到聚合向量h,其中\alpha表示的是权重

       \alpha的计算如下,首先通过一纬卷积核\theta ^T的卷积计算得到重要性系数c^{_{k}}将结果输入到softmax中得到相应的权重其实仔细的考虑,这获取权重的方式正是最正经的attention的应用。

由于是级联attention机制,所以两者的关系为:

最后的损失函数可以定义为:

实验结果:相比来看,结果没有一个论文的结果好。其实在再次思考论文的时候,我意识到,在之前attention机制是对一张图使用,抓住图种表达信息的关键信息,比如常见的输出人脸的哪个表达信息的图。在本文中,是将多个图看作是主体,使用attention机制选择出贡献较好的图片


论文名称:ENCODING TEMPORAL INFORMATION FOR AUTOMATIC DEPRESSION RECOGNITION

FROM FACIAL ANALYSIS

数据集:AVEC2013、AVEC2014

创新点:在传统双流的基础上,对时间特征的预处理做了新的处理,使用的提取高级语义特征的网络为Resnet_50网络

整体结构:

从时间和空间两个角度进行抑郁症诊断的模型从2015年首次使用抑郁症诊断就开始 了,通过看这个模型图可以感受到依旧是从双流的角度出发的,不同的是主体的网络已经不再是之前的CNN网络。本文的主要创新点在于这个时间流的特征。


其实,本文考虑的问题也是各种抑郁症诊断过程中不可避免的问题-----过拟合。 文中提出了一种新的时间池方法来捕获和编码视频剪辑的时空动态到图像地图。其实在早期的文章中,也是会通过光流图实现时间特征的提取。其实现过程如下所示:

实验:

 预处理:1>采样,AVEC2013每100帧取一帧,AVEC2014每10帧取一帧;2>人脸对齐裁剪MTCNN工具

 模型:在VGG FACE 上训练过的Resnet_50 

 评价标准 : MSE和RMS

结果:这个结果如果是真实的,那么他就是我见过的最好的结果。


总结:

这是一部分我对论文的总结,其中还是有很多自己不理解的地方。由于这些论文作者都没公开代码,所以还有一些理解上的问题。现阶段,我选择使用Resnet_50网络开始搭建网路。

这篇关于Resnet50网络的应用—抑郁症诊断的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/548676

相关文章

nginx -t、nginx -s stop 和 nginx -s reload 命令的详细解析(结合应用场景)

《nginx-t、nginx-sstop和nginx-sreload命令的详细解析(结合应用场景)》本文解析Nginx的-t、-sstop、-sreload命令,分别用于配置语法检... 以下是关于 nginx -t、nginx -s stop 和 nginx -s reload 命令的详细解析,结合实际应

PostgreSQL的扩展dict_int应用案例解析

《PostgreSQL的扩展dict_int应用案例解析》dict_int扩展为PostgreSQL提供了专业的整数文本处理能力,特别适合需要精确处理数字内容的搜索场景,本文给大家介绍PostgreS... 目录PostgreSQL的扩展dict_int一、扩展概述二、核心功能三、安装与启用四、字典配置方法

Linux中压缩、网络传输与系统监控工具的使用完整指南

《Linux中压缩、网络传输与系统监控工具的使用完整指南》在Linux系统管理中,压缩与传输工具是数据备份和远程协作的桥梁,而系统监控工具则是保障服务器稳定运行的眼睛,下面小编就来和大家详细介绍一下它... 目录引言一、压缩与解压:数据存储与传输的优化核心1. zip/unzip:通用压缩格式的便捷操作2.

Python中re模块结合正则表达式的实际应用案例

《Python中re模块结合正则表达式的实际应用案例》Python中的re模块是用于处理正则表达式的强大工具,正则表达式是一种用来匹配字符串的模式,它可以在文本中搜索和匹配特定的字符串模式,这篇文章主... 目录前言re模块常用函数一、查看文本中是否包含 A 或 B 字符串二、替换多个关键词为统一格式三、提

Java MQTT实战应用

《JavaMQTT实战应用》本文详解MQTT协议,涵盖其发布/订阅机制、低功耗高效特性、三种服务质量等级(QoS0/1/2),以及客户端、代理、主题的核心概念,最后提供Linux部署教程、Sprin... 目录一、MQTT协议二、MQTT优点三、三种服务质量等级四、客户端、代理、主题1. 客户端(Clien

CSS中的Static、Relative、Absolute、Fixed、Sticky的应用与详细对比

《CSS中的Static、Relative、Absolute、Fixed、Sticky的应用与详细对比》CSS中的position属性用于控制元素的定位方式,不同的定位方式会影响元素在页面中的布... css 中的 position 属性用于控制元素的定位方式,不同的定位方式会影响元素在页面中的布局和层叠关

SpringBoot3应用中集成和使用Spring Retry的实践记录

《SpringBoot3应用中集成和使用SpringRetry的实践记录》SpringRetry为SpringBoot3提供重试机制,支持注解和编程式两种方式,可配置重试策略与监听器,适用于临时性故... 目录1. 简介2. 环境准备3. 使用方式3.1 注解方式 基础使用自定义重试策略失败恢复机制注意事项

Python使用Tkinter打造一个完整的桌面应用

《Python使用Tkinter打造一个完整的桌面应用》在Python生态中,Tkinter就像一把瑞士军刀,它没有花哨的特效,却能快速搭建出实用的图形界面,作为Python自带的标准库,无需安装即可... 目录一、界面搭建:像搭积木一样组合控件二、菜单系统:给应用装上“控制中枢”三、事件驱动:让界面“活”

如何确定哪些软件是Mac系统自带的? Mac系统内置应用查看技巧

《如何确定哪些软件是Mac系统自带的?Mac系统内置应用查看技巧》如何确定哪些软件是Mac系统自带的?mac系统中有很多自带的应用,想要看看哪些是系统自带,该怎么查看呢?下面我们就来看看Mac系统内... 在MAC电脑上,可以使用以下方法来确定哪些软件是系统自带的:1.应用程序文件夹打开应用程序文件夹

Python Flask 库及应用场景

《PythonFlask库及应用场景》Flask是Python生态中​轻量级且高度灵活的Web开发框架,基于WerkzeugWSGI工具库和Jinja2模板引擎构建,下面给大家介绍PythonFl... 目录一、Flask 库简介二、核心组件与架构三、常用函数与核心操作 ​1. 基础应用搭建​2. 路由与参