Resnet50网络的应用—抑郁症诊断

2023-12-29 06:50

本文主要是介绍Resnet50网络的应用—抑郁症诊断,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

写在前边

本人研究生阶段的研究内容为抑郁症诊断,最近一直在想搭建件简单有效的网络,提升自己编码能力的同时,推动科研的进展。本文是总结了最近两周学习的论文中,应用到Resnet_50网络的,在此进行整理和总结。欢迎相同方向的同学交流学习。

正文

相比于之前的思路,本部分选择的是三个论文,都是借助Resnet_50网络作为核心网路的,我觉得这个方向是可以进行相应的学习和研究的。


论文名称:DEPRESSION DETECTION BASED ON DEEP DISTRIBUTION LEARNING

数据集:AVEC2013、AVEC2014

创新点:本文的出发角度是很好的,解决现在部分模型中,损失函数是基于标记的面部图像,没有明确地探讨所有面部图像与抑郁水平之间的序数关系。通过对整个个体图片的完全整理,实现对所有图对相应的抑郁分数的对应,从而降低误差。

整体结构:

整体模型图如下图:

本文将抑郁症诊断问题作为分类问题处理的,整体以一个样本的所有图片作为一个样本,对应一个label。

本文提出  expectation loss 来描述抑郁分数的分布,首先针对输入的 i 个图片Xi,Yi为对应所以的label,Zi表示系统的输出抑郁症分数,计算获取概率,

为了求得分布,先计算下期望值,其中j表示label:

 

期望损失函数就可以表示为,其中M为bath_size:

实验部分:

 预处理:1>采样,AVEC2013每100帧取一帧,AVEC2014每10帧取一帧;2>人脸对齐裁剪MTCNN工具

 模型:在VGG FACE 上训练过的Resnet_50 

 评价标准 : MSE和RMS

结果:结果效果相比于之前的模型还是有很大的进步的,这也鼓励大家从整体的角度来考虑诊断的问题。

 现阶段思路的问题:实验中,作者是将一个vedio裁剪的图片一次送入到网络中吗?图片特别多,硬件不支持的问题是怎么处理的那?


论文名称:Learning content-adaptive feature pooling for facial depression recognition in videos

数据集:AVEC2014

创新点:作者发现,针对每个图片,模型认定其对最终结果的影响权重都是一样的。显然,这样是存在问题的,因为有的帧图片中的姿势、角度并不适合系统进行相应分数诊断。所以,作者借助memory attention mechanism 来对帧图片进行权重的分配,以使得效果较好的图片对结果起到主导作用。

整体结构:

从整体来看,网络是分为两部分:Resnet_50网络提取图片特征,级联的两层attention网络进行权重分配,最后的全连层输出抑郁诊断结果,网络整体结构如下图:

通过Resnet_50网络的到的特征,然后希望通过attention机制得到聚合向量h,其中\alpha表示的是权重

       \alpha的计算如下,首先通过一纬卷积核\theta ^T的卷积计算得到重要性系数c^{_{k}}将结果输入到softmax中得到相应的权重其实仔细的考虑,这获取权重的方式正是最正经的attention的应用。

由于是级联attention机制,所以两者的关系为:

最后的损失函数可以定义为:

实验结果:相比来看,结果没有一个论文的结果好。其实在再次思考论文的时候,我意识到,在之前attention机制是对一张图使用,抓住图种表达信息的关键信息,比如常见的输出人脸的哪个表达信息的图。在本文中,是将多个图看作是主体,使用attention机制选择出贡献较好的图片


论文名称:ENCODING TEMPORAL INFORMATION FOR AUTOMATIC DEPRESSION RECOGNITION

FROM FACIAL ANALYSIS

数据集:AVEC2013、AVEC2014

创新点:在传统双流的基础上,对时间特征的预处理做了新的处理,使用的提取高级语义特征的网络为Resnet_50网络

整体结构:

从时间和空间两个角度进行抑郁症诊断的模型从2015年首次使用抑郁症诊断就开始 了,通过看这个模型图可以感受到依旧是从双流的角度出发的,不同的是主体的网络已经不再是之前的CNN网络。本文的主要创新点在于这个时间流的特征。


其实,本文考虑的问题也是各种抑郁症诊断过程中不可避免的问题-----过拟合。 文中提出了一种新的时间池方法来捕获和编码视频剪辑的时空动态到图像地图。其实在早期的文章中,也是会通过光流图实现时间特征的提取。其实现过程如下所示:

实验:

 预处理:1>采样,AVEC2013每100帧取一帧,AVEC2014每10帧取一帧;2>人脸对齐裁剪MTCNN工具

 模型:在VGG FACE 上训练过的Resnet_50 

 评价标准 : MSE和RMS

结果:这个结果如果是真实的,那么他就是我见过的最好的结果。


总结:

这是一部分我对论文的总结,其中还是有很多自己不理解的地方。由于这些论文作者都没公开代码,所以还有一些理解上的问题。现阶段,我选择使用Resnet_50网络开始搭建网路。

这篇关于Resnet50网络的应用—抑郁症诊断的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/548676

相关文章

在Ubuntu上部署SpringBoot应用的操作步骤

《在Ubuntu上部署SpringBoot应用的操作步骤》随着云计算和容器化技术的普及,Linux服务器已成为部署Web应用程序的主流平台之一,Java作为一种跨平台的编程语言,具有广泛的应用场景,本... 目录一、部署准备二、安装 Java 环境1. 安装 JDK2. 验证 Java 安装三、安装 mys

Python中构建终端应用界面利器Blessed模块的使用

《Python中构建终端应用界面利器Blessed模块的使用》Blessed库作为一个轻量级且功能强大的解决方案,开始在开发者中赢得口碑,今天,我们就一起来探索一下它是如何让终端UI开发变得轻松而高... 目录一、安装与配置:简单、快速、无障碍二、基本功能:从彩色文本到动态交互1. 显示基本内容2. 创建链

Node.js 中 http 模块的深度剖析与实战应用小结

《Node.js中http模块的深度剖析与实战应用小结》本文详细介绍了Node.js中的http模块,从创建HTTP服务器、处理请求与响应,到获取请求参数,每个环节都通过代码示例进行解析,旨在帮... 目录Node.js 中 http 模块的深度剖析与实战应用一、引言二、创建 HTTP 服务器:基石搭建(一

java中VO PO DTO POJO BO DO对象的应用场景及使用方式

《java中VOPODTOPOJOBODO对象的应用场景及使用方式》文章介绍了Java开发中常用的几种对象类型及其应用场景,包括VO、PO、DTO、POJO、BO和DO等,并通过示例说明了它... 目录Java中VO PO DTO POJO BO DO对象的应用VO (View Object) - 视图对象

Go信号处理如何优雅地关闭你的应用

《Go信号处理如何优雅地关闭你的应用》Go中的优雅关闭机制使得在应用程序接收到终止信号时,能够进行平滑的资源清理,通过使用context来管理goroutine的生命周期,结合signal... 目录1. 什么是信号处理?2. 如何优雅地关闭 Go 应用?3. 代码实现3.1 基本的信号捕获和优雅关闭3.2

正则表达式高级应用与性能优化记录

《正则表达式高级应用与性能优化记录》本文介绍了正则表达式的高级应用和性能优化技巧,包括文本拆分、合并、XML/HTML解析、数据分析、以及性能优化方法,通过这些技巧,可以更高效地利用正则表达式进行复杂... 目录第6章:正则表达式的高级应用6.1 模式匹配与文本处理6.1.1 文本拆分6.1.2 文本合并6

python中的与时间相关的模块应用场景分析

《python中的与时间相关的模块应用场景分析》本文介绍了Python中与时间相关的几个重要模块:`time`、`datetime`、`calendar`、`timeit`、`pytz`和`dateu... 目录1. time 模块2. datetime 模块3. calendar 模块4. timeit

中文分词jieba库的使用与实景应用(一)

知识星球:https://articles.zsxq.com/id_fxvgc803qmr2.html 目录 一.定义: 精确模式(默认模式): 全模式: 搜索引擎模式: paddle 模式(基于深度学习的分词模式): 二 自定义词典 三.文本解析   调整词出现的频率 四. 关键词提取 A. 基于TF-IDF算法的关键词提取 B. 基于TextRank算法的关键词提取

水位雨量在线监测系统概述及应用介绍

在当今社会,随着科技的飞速发展,各种智能监测系统已成为保障公共安全、促进资源管理和环境保护的重要工具。其中,水位雨量在线监测系统作为自然灾害预警、水资源管理及水利工程运行的关键技术,其重要性不言而喻。 一、水位雨量在线监测系统的基本原理 水位雨量在线监测系统主要由数据采集单元、数据传输网络、数据处理中心及用户终端四大部分构成,形成了一个完整的闭环系统。 数据采集单元:这是系统的“眼睛”,

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个