C语言学习NO.7-函数(二)函数递归

2023-12-28 20:28
文章标签 语言 函数 学习 递归 no.7

本文主要是介绍C语言学习NO.7-函数(二)函数递归,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、什么是递归?

程序调用自身的编程技巧称为递归( recursion),递归函数一定要有结束条件,否则会产生死递归,导致栈溢出(Stack overflow)。

#include <stdio.h>
int main()
{printf("Hello\n");main();	//main函数中用调用了main函数return 0; 
}			//程序会一直打印 Hello

递归作为一种算法在程序设计语言中广泛应用。 一个过程或函数在其定义或说明中有直接或间接调用自身的一种方法,使用递归可以在解决一些复杂问题时将问题简单化,降低编程难度。

递归的主要思考方式在于:把大事化小

递归就是递推回归的意思。

二、递归的两个必要条件

  • 递归存在限制条件,当满足这个限制条件的时候,递归便不再继续。
  • 每次递归调用之后越来越接近这个限制条件。

三、递归与迭代

例1:接收一个整型值(无符号),按照顺序打印它的每一位。

例如: 接收一个整型值(无符号),按照顺序打印它的每一位。

输入:1234,输出 1 2 3 4.

参考代码:

#include <stdio.h>
//接受一个整型值(无符号),按照顺序打印它的每一位。
//输入:1234,输出 1 2 3 4.
//使用函数递归
void print(int n) 
{if(n>9)//当n逐渐为1234  123  12  1时,无法进入if语句中,转向下一语句{print(n/10);//进入if语句后进行函数调用}printf("%d ", n%10);//打印出1%10  12%10 123%10  1234%10  的值
}int main()
{int num = 1234;print(num);return 0; 
}
#include <stdio.h>
#include <math.h>
//将数字每一位打印出来
//无函数递归
int main()
{int n = 1234;int i = 0;int ret = n;for (i = 0; n != 0; i++){n = n/10;//123 12 1 0}while (ret != 0)//123 12 1   0{int m = pow(10, i);// 3 2 1 0    1000  100  10  1if(m<ret){printf("%d ", ret / m);//1  2  3  4  }ret = ret % m;//234 34 4i--;}return 0;
}

例2: 编写函数不允许创建临时变量,求字符串的长度

编写函数不允许创建临时变量,求字符串的长度。

参考代码:

#include <stdio.h>
//编写函数不允许创建临时变量,求字符串的长度。
int Strlen(const char*str)
{if(*str == '\0')//字符串以\0为结尾return 0;elsereturn 1+Strlen(str+1);
}int main()
{char *p = "abcdef";int len = Strlen(p);printf("%d\n", len);return 0;
}

例3:求n的阶乘

求n的阶乘。(不考虑溢出)

参考代码:

int factorial(int n)
{//求n的阶乘。(不考虑溢出) if(n <= 1)return 1;elsereturn n * factorial(n-1);	//1*2*3*4*……*n-1*n
}int main()
{int n = 0;scanf("%d", &n);int ret = factorial(n);printf("%d\n", ret);return 0; 
}

在测试中,使用 factorial 函数求10000的阶乘(不考虑结果的正确性),程序会崩溃。

例4: 求第n个斐波那契数

求第n个斐波那契数。(不考虑溢出)

参考代码:

int fib(int n)
{//求第n个斐波那契数。(不考虑溢出) if (n <= 2)return 1;elsereturn fib(n - 1) + fib(n - 2);
}

在测试中,如果使用 fib 这个函数的时候计算第50个斐波那契数字的时候特别耗费时间。

提问:为什么计算n的阶乘和斐波那契数存在问题?

我们发现 fib 函数在调用的过程中很多计算其实在一直重复。

把代码修改一下:

int count = 0;//全局变量int fib(int n)
{if(n == 3)count++;if (n <= 2)return 1;elsereturn fib(n - 1) + fib(n - 2);
}

最后我们输出看看count的值。

系统分配给程序的栈空间是有限的,如果调试 factorial 函数时参数较大,可能出现死递归情况,有可能导致一直开辟栈空间,最终产生栈空间耗尽的情况,这样的现象我们称为栈溢出(stack overflow)

解决上述的问题:

1. 将递归改写成非递归;

// //求n的阶乘
int factorial(int n) 
{int result = 1;while (n > 1){result *= n ;n -= 1;}return result; 
}int main()
{int n = 0;scanf("%d", &n);int ret = factorial(n);printf("%d\n", ret);return 0; 
}//求第n个斐波那契数
int fib(int n) 
{int result;int pre_result;int next_older_result;result = pre_result = 1;while (n > 2){n -= 1;next_older_result = pre_result;pre_result = result;result = pre_result + next_older_result;}return result; 
}

2. 使用 static 对象替代 nonstatic 局部对象。在递归函数设计中可以使用 static 对象替代 nonstatic 局部对象(即栈对象),这不仅可以减少每次递归调用和返回时产生和释放

nonstatic 对象的开销,而且 static 对象还可以保存递归调用的中间状态,并且可为各个调用层所访问。

提示

1. 许多问题是以递归的形式进行解释的,这只是因为它比非递归的形式更为清晰。

2. 但是这些问题的迭代实现往往比递归实现效率更高,虽然代码的可读性稍微差些。

3. 当一个问题相当复杂,难以用迭代实现时,此时递归实现的简洁性便可以补偿它所带来的运行时开销。

四、函数递归的练习题

练习1:走台阶

比如接下来的题目:假如有n个台阶,一次只能上1个台阶或2个台阶,请问走到第n个台阶有几种走法?

#include <stdio.h>
//递归
int step(int n)
{if(n <= 2)return n;return step(n-1)+step(n-2);
}
int main()
{int n = 0;scanf("%d",&n);int ret = step(n);printf("%d",ret);return 0;
}

练习2:编写一个函数 reverse_string(char * string)(递归实现)

实现:将参数字符串中的字符反向排列,不是逆序打印。

要求:不能使用C函数库中的字符串操作函数。

比如:

char arr[] = "abcdef";

逆序之后数组的内容变成:fedcba

#include <stdio.h>void reverse_string(char * string)
{if(*string != '\0')reverse_string(string+1);//字符串逐渐后移一位,直到'\0'if(*string != '\0')//为了不把'\0'打印出来printf("%c",*string);
}int main()
{char arr[] = {"abcdefg"};reverse_string(arr);return 0;
}

练习3:写一个递归函数DigitSum(n),输入一个非负整数,返回组成它的数字之和

例如,调用DigitSum(1729),则应该返回1+7+2+9,它的和是19

输入:1729,输出:19

#include <stdio.h>int DigitSum(int n)
{static int sum = 0;if(n>9)DigitSum(n/10);//172 17 1sum += n%10;//1+7+2+9return sum;
}int main()
{int n = 0;scanf("%d",&n);//输入一个非负整数int ret = DigitSum(n);printf("%d",ret);return 0;
}

练习4:编写一个函数实现n的k次方,使用递归实现。

#include <stdio.h>int my_pow(int n,int k)
{if(k == 0)return 1;elsereturn n*my_pow(n,k-1);
}int main()
{int n = 0;int k = 0;scanf("%d %d",&n,&k);int ret = my_pow(n,k);printf("%d",ret);return 0;
}

这篇关于C语言学习NO.7-函数(二)函数递归的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/547192

相关文章

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

【前端学习】AntV G6-08 深入图形与图形分组、自定义节点、节点动画(下)

【课程链接】 AntV G6:深入图形与图形分组、自定义节点、节点动画(下)_哔哩哔哩_bilibili 本章十吾老师讲解了一个复杂的自定义节点中,应该怎样去计算和绘制图形,如何给一个图形制作不间断的动画,以及在鼠标事件之后产生动画。(有点难,需要好好理解) <!DOCTYPE html><html><head><meta charset="UTF-8"><title>06

学习hash总结

2014/1/29/   最近刚开始学hash,名字很陌生,但是hash的思想却很熟悉,以前早就做过此类的题,但是不知道这就是hash思想而已,说白了hash就是一个映射,往往灵活利用数组的下标来实现算法,hash的作用:1、判重;2、统计次数;

hdu1171(母函数或多重背包)

题意:把物品分成两份,使得价值最接近 可以用背包,或者是母函数来解,母函数(1 + x^v+x^2v+.....+x^num*v)(1 + x^v+x^2v+.....+x^num*v)(1 + x^v+x^2v+.....+x^num*v) 其中指数为价值,每一项的数目为(该物品数+1)个 代码如下: #include<iostream>#include<algorithm>

零基础学习Redis(10) -- zset类型命令使用

zset是有序集合,内部除了存储元素外,还会存储一个score,存储在zset中的元素会按照score的大小升序排列,不同元素的score可以重复,score相同的元素会按照元素的字典序排列。 1. zset常用命令 1.1 zadd  zadd key [NX | XX] [GT | LT]   [CH] [INCR] score member [score member ...]

科研绘图系列:R语言扩展物种堆积图(Extended Stacked Barplot)

介绍 R语言的扩展物种堆积图是一种数据可视化工具,它不仅展示了物种的堆积结果,还整合了不同样本分组之间的差异性分析结果。这种图形表示方法能够直观地比较不同物种在各个分组中的显著性差异,为研究者提供了一种有效的数据解读方式。 加载R包 knitr::opts_chunk$set(warning = F, message = F)library(tidyverse)library(phyl

【机器学习】高斯过程的基本概念和应用领域以及在python中的实例

引言 高斯过程(Gaussian Process,简称GP)是一种概率模型,用于描述一组随机变量的联合概率分布,其中任何一个有限维度的子集都具有高斯分布 文章目录 引言一、高斯过程1.1 基本定义1.1.1 随机过程1.1.2 高斯分布 1.2 高斯过程的特性1.2.1 联合高斯性1.2.2 均值函数1.2.3 协方差函数(或核函数) 1.3 核函数1.4 高斯过程回归(Gauss

透彻!驯服大型语言模型(LLMs)的五种方法,及具体方法选择思路

引言 随着时间的发展,大型语言模型不再停留在演示阶段而是逐步面向生产系统的应用,随着人们期望的不断增加,目标也发生了巨大的变化。在短短的几个月的时间里,人们对大模型的认识已经从对其zero-shot能力感到惊讶,转变为考虑改进模型质量、提高模型可用性。 「大语言模型(LLMs)其实就是利用高容量的模型架构(例如Transformer)对海量的、多种多样的数据分布进行建模得到,它包含了大量的先验

【学习笔记】 陈强-机器学习-Python-Ch15 人工神经网络(1)sklearn

系列文章目录 监督学习:参数方法 【学习笔记】 陈强-机器学习-Python-Ch4 线性回归 【学习笔记】 陈强-机器学习-Python-Ch5 逻辑回归 【课后题练习】 陈强-机器学习-Python-Ch5 逻辑回归(SAheart.csv) 【学习笔记】 陈强-机器学习-Python-Ch6 多项逻辑回归 【学习笔记 及 课后题练习】 陈强-机器学习-Python-Ch7 判别分析 【学