双线性插值理解与Python实现

2023-12-27 23:32

本文主要是介绍双线性插值理解与Python实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

双线性插值

 

公式就是这么推来的,主要就是在x方向和y方向上都进行线性插值,利用临近点进行计算

在计算的时候利用了几何中心对齐来优化原来的直接缩放

 

__author__ = 'Alex Wang'import cv2
import time
from math import ceil, floor
import numpy as np'''
python implementation of bilinear interpolation
'''def bilinear_interpolation(img, out_dim):src_h, src_w, channel = img.shapedst_h, dst_w = out_dim[1], out_dim[0]if src_h == dst_h and src_w == dst_w:return img.copy()dst_img = np.zeros((dst_h, dst_w, channel), dtype=np.uint8)scale_x, scale_y = float(src_w) / dst_w, float(src_h) / dst_hfor i in range(channel):for dst_y in range(dst_h):for dst_x in range(dst_w):# find the origin x and y coordinates of dst image x and y# use geometric center symmetry# if use direct way, src_x = dst_x * scale_xsrc_x = (dst_x + 0.5) * scale_x - 0.5src_y = (dst_y + 0.5) * scale_y - 0.5# find the coordinates of the points which will be used to compute the interpolationsrc_x0 = int(floor(src_x))src_x1 = min(src_x0 + 1, src_w - 1)src_y0 = int(floor(src_y))src_y1 = min(src_y0 + 1, src_h - 1)if src_x0 != src_x1 and src_y1 != src_y0:# calculate the interpolationtemp0 = ((src_x1 - src_x) * img[src_y0, src_x0,i] + (src_x - src_x0) * img[src_y0, src_x1, i]) / (src_x1 - src_x0)temp1 = (src_x1 - src_x) * img[src_y1, src_x0,i] + (src_x - src_x0) * img[src_y1, src_x1, i] / (src_x1 - src_x0)dst_img[dst_y, dst_x, i] = int((src_y1 - src_y) * temp0 + (src_y - src_y0) * temp1) / (src_y1 - src_y0)return dst_imgif __name__ == '__main__':img = cv2.imread('bounding_box_and_polygon.png')start = time.time()dst = bilinear_interpolation(img, (1000, 1000))print('cost {} seconds'.format(time.time() - start))cv2.imshow('result', dst)cv2.waitKey()

References:

https://blog.csdn.net/xbinworld/article/details/65660665

https://blog.csdn.net/wudi_X/article/details/79782832

https://en.wikipedia.org/wiki/Bilinear_interpolation

 

这篇关于双线性插值理解与Python实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/544586

相关文章

python: 多模块(.py)中全局变量的导入

文章目录 global关键字可变类型和不可变类型数据的内存地址单模块(单个py文件)的全局变量示例总结 多模块(多个py文件)的全局变量from x import x导入全局变量示例 import x导入全局变量示例 总结 global关键字 global 的作用范围是模块(.py)级别: 当你在一个模块(文件)中使用 global 声明变量时,这个变量只在该模块的全局命名空

hdu1043(八数码问题,广搜 + hash(实现状态压缩) )

利用康拓展开将一个排列映射成一个自然数,然后就变成了普通的广搜题。 #include<iostream>#include<algorithm>#include<string>#include<stack>#include<queue>#include<map>#include<stdio.h>#include<stdlib.h>#include<ctype.h>#inclu

认识、理解、分类——acm之搜索

普通搜索方法有两种:1、广度优先搜索;2、深度优先搜索; 更多搜索方法: 3、双向广度优先搜索; 4、启发式搜索(包括A*算法等); 搜索通常会用到的知识点:状态压缩(位压缩,利用hash思想压缩)。

【C++】_list常用方法解析及模拟实现

相信自己的力量,只要对自己始终保持信心,尽自己最大努力去完成任何事,就算事情最终结果是失败了,努力了也不留遗憾。💓💓💓 目录   ✨说在前面 🍋知识点一:什么是list? •🌰1.list的定义 •🌰2.list的基本特性 •🌰3.常用接口介绍 🍋知识点二:list常用接口 •🌰1.默认成员函数 🔥构造函数(⭐) 🔥析构函数 •🌰2.list对象

【Prometheus】PromQL向量匹配实现不同标签的向量数据进行运算

✨✨ 欢迎大家来到景天科技苑✨✨ 🎈🎈 养成好习惯,先赞后看哦~🎈🎈 🏆 作者简介:景天科技苑 🏆《头衔》:大厂架构师,华为云开发者社区专家博主,阿里云开发者社区专家博主,CSDN全栈领域优质创作者,掘金优秀博主,51CTO博客专家等。 🏆《博客》:Python全栈,前后端开发,小程序开发,人工智能,js逆向,App逆向,网络系统安全,数据分析,Django,fastapi

让树莓派智能语音助手实现定时提醒功能

最初的时候是想直接在rasa 的chatbot上实现,因为rasa本身是带有remindschedule模块的。不过经过一番折腾后,忽然发现,chatbot上实现的定时,语音助手不一定会有响应。因为,我目前语音助手的代码设置了长时间无应答会结束对话,这样一来,chatbot定时提醒的触发就不会被语音助手获悉。那怎么让语音助手也具有定时提醒功能呢? 我最后选择的方法是用threading.Time

【Python编程】Linux创建虚拟环境并配置与notebook相连接

1.创建 使用 venv 创建虚拟环境。例如,在当前目录下创建一个名为 myenv 的虚拟环境: python3 -m venv myenv 2.激活 激活虚拟环境使其成为当前终端会话的活动环境。运行: source myenv/bin/activate 3.与notebook连接 在虚拟环境中,使用 pip 安装 Jupyter 和 ipykernel: pip instal

Android实现任意版本设置默认的锁屏壁纸和桌面壁纸(两张壁纸可不一致)

客户有些需求需要设置默认壁纸和锁屏壁纸  在默认情况下 这两个壁纸是相同的  如果需要默认的锁屏壁纸和桌面壁纸不一样 需要额外修改 Android13实现 替换默认桌面壁纸: 将图片文件替换frameworks/base/core/res/res/drawable-nodpi/default_wallpaper.*  (注意不能是bmp格式) 替换默认锁屏壁纸: 将图片资源放入vendo

C#实战|大乐透选号器[6]:实现实时显示已选择的红蓝球数量

哈喽,你好啊,我是雷工。 关于大乐透选号器在前面已经记录了5篇笔记,这是第6篇; 接下来实现实时显示当前选中红球数量,蓝球数量; 以下为练习笔记。 01 效果演示 当选择和取消选择红球或蓝球时,在对应的位置显示实时已选择的红球、蓝球的数量; 02 标签名称 分别设置Label标签名称为:lblRedCount、lblBlueCount

【机器学习】高斯过程的基本概念和应用领域以及在python中的实例

引言 高斯过程(Gaussian Process,简称GP)是一种概率模型,用于描述一组随机变量的联合概率分布,其中任何一个有限维度的子集都具有高斯分布 文章目录 引言一、高斯过程1.1 基本定义1.1.1 随机过程1.1.2 高斯分布 1.2 高斯过程的特性1.2.1 联合高斯性1.2.2 均值函数1.2.3 协方差函数(或核函数) 1.3 核函数1.4 高斯过程回归(Gauss