龙芯杯个人赛串口——做一个 UART串口——RS-232

2023-12-27 13:15
文章标签 rs 串口 uart 龙芯 232 个人赛

本文主要是介绍龙芯杯个人赛串口——做一个 UART串口——RS-232,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

      • Async transmitter
      • Async receiver
        • 1. RS-232 串行接口的工作原理
          • DB-9 connector
          • Asynchronous communication
          • How fast can we send data?
        • 2.波特率时钟生成器
          • Parameterized FPGA baud generator
        • 3.RS-232 transmitter
          • 数据序列化
          • 完整代码:
        • 4.RS-232 receiver
          • Oversampling
          • The design
          • 完整代码
        • 5.How to use the RS-232 transmitter and receiver
      • 龙芯杯个人赛串口信号连接

串行接口是将 FPGA 连接到 PC 的简单方法。我们只需要一个发射器和接收器模块。

Async transmitter

它通过对要传输的数据进行序列化,创建一个信号 “TxD”。
在这里插入图片描述

Async receiver

它从 FPGA 外部获取信号 “RxD”,并将其 “去序列化”,以便在 FPGA 内部使用。

在这里插入图片描述
本项目包括五个部分

    1. RS-232 串行接口的工作原理
    1. 波特发生器
    1. 发射器
    1. 接收器
    1. 使用示例
1. RS-232 串行接口的工作原理

RS-232 接口具有以下特点:
- 使用 9 针连接器 “DB-9”(老式 PC 使用 25 针连接器 “DB-25”)。
- 允许双向全双工通信(个人电脑可同时发送和接收数据)。
- 最大通信速度约为 10KB/s。

DB-9 connector

可能在电脑背面看到过这个连接器。
在这里插入图片描述
它有 9 个引脚,但重要的有 3 个:

第 2 针:RxD(接收数据)。
第 3 针:TxD(发送数据)。
第 5 针:GND(接地)。

只需 3 根导线,就能发送和接收数据。

数据通常以 8 位为单位发送(我们称之为字节),并进行 “序列化”:先发送 LSB(数据位 0),然后是位 1,…最后是 MSB(位 7)。

Asynchronous communication

该接口使用异步协议。这意味着没有时钟信号与数据一起传输。接收器必须有办法根据接收到的数据位 “计时”。

在 RS-232 的情况下,可以这样做:

电缆两端事先就通信参数(速度、格式......)达成一致。这需要在通信开始前手动完成。
只要线路处于空闲状态,发送器就会发送 "空闲"(="1")。
发送器在传输每个字节前都会发送 "开始"(="0"),以便接收器知道有字节到来。
发送字节数据的 8 位。
发送器在每个字节后发送 "停止"(="1")。

让我们看看 0x55 字节在传输时的样子:
在这里插入图片描述
字节 0x55 的二进制形式是 01010101。
但由于它是先传输 LSB(第 0 位),因此该行会像这样切换: 1-0-1-0-1-0-1-0.

下面是另一个例子:
在这里插入图片描述

How fast can we send data?

速度以波特为单位,即每秒可发送多少比特。例如,1000 波特表示每秒 1000 比特,或每个比特持续一毫秒。

RS-232 接口的常见实现(如 PC 中使用的接口)不允许使用任何速度。如果你想使用 123456 波特,那就没戏了。你必须采用某种 "标准 "速度。常见的值有

1200 波特。
9600 波特。
38400 波特。
115200 波特(通常是最快的速度)。

115200 波特时,每个比特持续 (1/115200) = 8.7µs。如果传输 8 位数据,则持续时间为 8 x 8.7µs = 69µs。但每个字节需要一个额外的起始位和停止位,因此实际上需要 10 x 8.7µs = 87µs。这意味着最高速度为每秒 11.5KB。

在 115200 波特的情况下,一些带有错误芯片的 PC 需要一个 "长 "停止位(1.5 或 2 位长…),这使得最高速度降至每秒 10.5KB 左右。
物理层

电线上的信号使用正/负电压方案。

1 "使用 -10V(或 -5V 至 -15V)电压发送。
0 "使用 +10V(或 5V 至 15V 之间)发送。

因此,空闲线路的电压类似于 -10V。

2.波特率时钟生成器

在这里,我们希望以最大速度使用串行链路,即 115200 波特(较慢的速度也很容易生成)。FPGA 通常以 MHz 速度运行,远高于 115200Hz(按当今标准,RS-232 的速度相当慢)。我们需要找到一种方法,(通过 FPGA 时钟)产生尽可能接近每秒 115200 次的 "滴答 "声。

传统上,RS-232 芯片使用 1.8432MHz 时钟,因为这样可以很容易地产生标准波特频率… 1.8432MHz 除以 16 得到 115200Hz。

// let's assume the FPGA clock signal runs at 1.8432MHz
// we create a 4-bit counter
reg [3:0] BaudDivCnt;
always @(posedge clk) BaudDivCnt <= BaudDivCnt + 1; // count forever from 0 to 15// and a tick signal that is asserted once every 16 clocks (so 115200 times a second)
wire BaudTick = (BaudDivCnt==15); 

这很简单。但如果时钟频率不是 1.8432MHz,而是 2MHz,该怎么办呢?要从 2MHz 时钟产生 115200Hz 的频率,我们需要将时钟除以 “17.361111111…”。这可不是一个整数。解决办法是有时除以 17,有时除以 18,确保比率保持 “17.361111111”。这其实很容易做到。

请看下面的 "C "代码

while(1) // repeat forever
{acc += 115200;if(acc>=2000000) printf("*"); else printf(" ");acc %= 2000000;
}

这样,平均每 "17.361111111… "循环一次,就能以精确的比例打印出 “*”。

要在 FPGA 中高效地实现同样的功能,我们需要依靠串行接口能够容忍波特频率发生器中百分之几的误差。

我们希望 2000000 是 2 的幂。显然,2000000 不是。因此,我们要改变比率… 用 “1024/59” = 17.356 代替 “2000000/115200”。这非常接近我们的理想比率,而且可以高效地在 FPGA 上实现:我们使用一个 10 位累加器,以 59 为增量,每当累加器溢出时打一个勾。

// let's assume the FPGA clock signal runs at 2.0000MHz
// we use a 10-bit accumulator plus an extra bit for the accumulator carry-out
reg [10:0] acc;   // 11 bits total!// add 59 to the accumulator at each clock
always @(posedge clk)acc <= acc[9:0] + 59; // use 10 bits from the previous accumulator result, but save the full 11 bits resultwire BaudTick = acc[10]; // so that the 11th bit is the accumulator carry-out 

使用我们的 2MHz 时钟,"BaudTick "每秒断言 115234 次,与理想的 115200 误差为 0.03%。

Parameterized FPGA baud generator

之前的设计使用的是 10 位累加器,但随着时钟频率的增加,需要更多的位数。
下面是一个使用 25MHz 时钟和 16 位累加器的设计。该设计是参数化的,因此很容易定制。

parameter ClkFrequency = 25000000; // 25MHz
parameter Baud = 115200;
parameter BaudGeneratorAccWidth = 16;
parameter BaudGeneratorInc = (Baud<<BaudGeneratorAccWidth)/ClkFrequency;reg [BaudGeneratorAccWidth:0] BaudGeneratorAcc;
always @(posedge clk)BaudGeneratorAcc <= BaudGeneratorAcc[BaudGeneratorAccWidth-1:0] + BaudGeneratorInc;wire BaudTick = BaudGeneratorAcc[BaudGeneratorAccWidth]; 

最后一个实现问题:"BaudGeneratorInc "的计算是错误的,这是因为 Verilog 使用 32 位中间结果,而计算结果超过了 32 位。为解决这个问题,请修改如下内容。

parameter BaudGeneratorInc = ((Baud<<(BaudGeneratorAccWidth-4))+(ClkFrequency>>5))/(ClkFrequency>>4); 

这条线的另一个优点是将结果四舍五入,而不是截断。

现在我们有了足够精确的波特发生器,就可以继续使用 RS-232 发送器和接收器模块了。

  1. 代码实现
module BaudTickGen(input  wire clk, enable,output wire tick  // generate a tick at the specified baud rate * oversampling
);
parameter ClkFrequency = 25000000;
parameter Baud = 115200;
parameter Oversampling = 1;function integer log2(input integer v); begin log2=0; while(v>>log2) log2=log2+1; end endfunction
localparam AccWidth = log2(ClkFrequency/Baud)+8;  // +/- 2% max timing error over a byte
reg [AccWidth:0] Acc = 0;
localparam ShiftLimiter = log2(Baud*Oversampling >> (31-AccWidth));  // this makes sure Inc calculation doesn't overflow
localparam Inc = ((Baud*Oversampling << (AccWidth-ShiftLimiter))+(ClkFrequency>>(ShiftLimiter+1)))/(ClkFrequency>>ShiftLimiter);
always @(posedge clk) if(enable) Acc <= Acc[AccWidth-1:0] + Inc[AccWidth:0]; else Acc <= Inc[AccWidth:0];
assign tick = Acc[AccWidth];
  1. 解释
    这段Verilog代码看起来是在实现一个串口通信的波特率时钟生成器。我们逐段解释一下代码:
  • 模块定义:

    module BaudTickGen(input  wire clk, enable,output wire tick  // 根据指定的波特率 * 过采样率生成时钟脉冲
    );
    

    这个模块有三个端口:clkenable 作为输入,tick 作为输出。它旨在根据指定的波特率和过采样率生成一个时钟脉冲信号。

  • 参数声明:

    parameter ClkFrequency = 25000000;
    parameter Baud = 115200;
    parameter Oversampling = 1;
    

    这些参数定义了时钟频率 (ClkFrequency)、所需波特率 (Baud) 以及过采样因子 (Oversampling)。您可以根据需要自定义这些值。

  • Log2 函数:

    function integer log2(input integer v);beginlog2 = 0;while (v >> log2)log2 = log2 + 1;end
    endfunction
    

    这是一个简单的函数,用于计算输入整数 v 的以2为底的对数。

  • 局部参数:

    localparam AccWidth = log2(ClkFrequency/Baud) + 8;
    

    AccWidth 是根据所需的位数来表示累加值 (Acc),以实现在一个字节内最大的时序误差不超过 +/- 2%。

    localparam ShiftLimiter = log2(Baud*Oversampling >> (31-AccWidth));
    

    ShiftLimiter 用于限制左移操作在计算 Inc 时以防止溢出。

    localparam Inc = ((Baud*Oversampling << (AccWidth-ShiftLimiter)) + (ClkFrequency>>(ShiftLimiter+1))) / (ClkFrequency>>ShiftLimiter);
    

    Inc 是每个时钟周期添加到累加器的增量值,以实现所需的波特率。

    always @(posedge clk) if(enable) Acc <= Acc[AccWidth-1:0] + Inc[AccWidth:0];else Acc <= Inc[AccWidth:0];
    

    这个总是块在时钟的上升沿触发 (posedge clk)。如果 enable 为真,则将 Inc 的值累加到累加器 Acc 中;否则,将 Acc 设置为 Inc 的初始值。

  • 赋值语句:

    assign tick = Acc[AccWidth];
    

    这将累加器的最高位赋给 tick 输出,这就是生成的时钟脉冲信号。

3.RS-232 transmitter

我们正在构建一个参数固定的 “异步发射机”:8 个数据位、2 个停止位、无奇偶校验。
在这里插入图片描述
工作原理是这样的:

发送器在 FPGA 内获取 8 位数据并将其序列化(从 "TxD_start "信号断定时开始)。
在传输过程中,"忙 "信号被断开(在此期间 "TxD_start "信号被忽略)。
数据序列化

要完成起始位、8 个数据位和停止位,似乎应该使用状态机。

reg [3:0] state;// the state machine starts when "TxD_start" is asserted, but advances when "BaudTick" is asserted (115200 times a second)
always @(posedge clk)
case(state)4'b0000: if(TxD_start) state <= 4'b0100;4'b0100: if(BaudTick) state <= 4'b1000; // start4'b1000: if(BaudTick) state <= 4'b1001; // bit 04'b1001: if(BaudTick) state <= 4'b1010; // bit 14'b1010: if(BaudTick) state <= 4'b1011; // bit 24'b1011: if(BaudTick) state <= 4'b1100; // bit 34'b1100: if(BaudTick) state <= 4'b1101; // bit 44'b1101: if(BaudTick) state <= 4'b1110; // bit 54'b1110: if(BaudTick) state <= 4'b1111; // bit 64'b1111: if(BaudTick) state <= 4'b0001; // bit 74'b0001: if(BaudTick) state <= 4'b0010; // stop14'b0010: if(BaudTick) state <= 4'b0000; // stop2default: if(BaudTick) state <= 4'b0000;
endcase

现在,我们只需生成 "TxD "输出。

reg muxbit;always @(state[2:0])
case(state[2:0])0: muxbit <= TxD_data[0];1: muxbit <= TxD_data[1];2: muxbit <= TxD_data[2];3: muxbit <= TxD_data[3];4: muxbit <= TxD_data[4];5: muxbit <= TxD_data[5];6: muxbit <= TxD_data[6];7: muxbit <= TxD_data[7];
endcase// combine start, data, and stop bits together
assign TxD = (state<4) | (state[3] & muxbit); 
完整代码:
module async_transmitter(input wire clk,input wire TxD_start,input wire [7:0] TxD_data,output wire TxD,output wire TxD_busy
);// Assert TxD_start for (at least) one clock cycle to start transmission of TxD_data
// TxD_data is latched so that it doesn't have to stay valid while it is being sentparameter ClkFrequency = 25000000;	// 25MHz
parameter Baud = 115200;// generate
// 	if(ClkFrequency<Baud*8 && (ClkFrequency % Baud!=0)) ASSERTION_ERROR PARAMETER_OUT_OF_RANGE("Frequency incompatible with requested Baud rate");
// endgenerate`ifdef SIMULATION
wire BitTick = 1'b1;  // output one bit per clock cycle
`else
wire BitTick;
BaudTickGen #(ClkFrequency, Baud) tickgen(.clk(clk), .enable(TxD_busy), .tick(BitTick));
`endifreg [3:0] TxD_state = 0;
wire TxD_ready = (TxD_state==0);
assign TxD_busy = ~TxD_ready;reg [7:0] TxD_shift = 0;
always @(posedge clk)
beginif(TxD_ready & TxD_start)TxD_shift <= TxD_data;elseif(TxD_state[3] & BitTick)TxD_shift <= (TxD_shift >> 1);case(TxD_state)4'b0000: if(TxD_start) TxD_state <= 4'b0100;4'b0100: if(BitTick) TxD_state <= 4'b1000;  // start bit4'b1000: if(BitTick) TxD_state <= 4'b1001;  // bit 04'b1001: if(BitTick) TxD_state <= 4'b1010;  // bit 14'b1010: if(BitTick) TxD_state <= 4'b1011;  // bit 24'b1011: if(BitTick) TxD_state <= 4'b1100;  // bit 34'b1100: if(BitTick) TxD_state <= 4'b1101;  // bit 44'b1101: if(BitTick) TxD_state <= 4'b1110;  // bit 54'b1110: if(BitTick) TxD_state <= 4'b1111;  // bit 64'b1111: if(BitTick) TxD_state <= 4'b0010;  // bit 74'b0010: if(BitTick) TxD_state <= 4'b0000;  // stop1//4'b0011: if(BitTick) TxD_state <= 4'b0000;  // stop2default: if(BitTick) TxD_state <= 4'b0000;endcase
endassign TxD = (TxD_state<4) | (TxD_state[3] & TxD_shift[0]);  // put together the start, data and stop bits
endmodule
4.RS-232 receiver

我们正在构建一个 “异步接收器”:
在这里插入图片描述
我们的实施工作就是这样:

模块从 RxD 线路中收集数据。
当接收到一个字节时,它就会出现在 "数据 "总线上。一旦接收到一个完整的字节,"data_ready "就会断言一个时钟。

请注意,"数据 "只有在 "数据就绪 "断言时才有效。其余时间不要使用它,因为可能会有新的数据出现,从而对它进行洗牌。

Oversampling

异步接收器必须以某种方式与接收到的信号同步(它通常无法访问发送器使用的时钟)。

为了确定新数据字节何时到来,我们以波特率频率的倍数对信号进行过采样,寻找 "起始 "位。
一旦检测到 "起始 "位,我们就以已知的波特率对线路进行采样,以获取数据位。

接收器通常以 16 倍波特率对输入信号进行过采样。这里我们使用 8 倍… 对于 115200 波特,采样率为 921600Hz。

假设我们有一个 "Baud8Tick "信号,每秒发出 921600 次。

The design

首先,输入的 "RxD "信号与我们的时钟无关。我们使用两个 D 触发器对其进行过采样,并使其与我们的时钟域同步。

reg [1:0] RxD_sync;
always @(posedge clk) if(Baud8Tick) RxD_sync <= {RxD_sync[0], RxD}; 

我们对数据进行过滤,以免将 RxD 线路上的短尖峰误认为是起始位。

reg [1:0] RxD_cnt;
reg RxD_bit;always @(posedge clk)
if(Baud8Tick)
beginif(RxD_sync[1] && RxD_cnt!=2'b11) RxD_cnt <= RxD_cnt + 1;elseif(~RxD_sync[1] && RxD_cnt!=2'b00) RxD_cnt <= RxD_cnt - 1;if(RxD_cnt==2'b00) RxD_bit <= 0;elseif(RxD_cnt==2'b11) RxD_bit <= 1;
end

一旦检测到 “start”,状态机就会对接收到的每个比特进行处理。

reg [3:0] state;always @(posedge clk)
if(Baud8Tick)
case(state)4'b0000: if(~RxD_bit) state <= 4'b1000; // start bit found?4'b1000: if(next_bit) state <= 4'b1001; // bit 04'b1001: if(next_bit) state <= 4'b1010; // bit 14'b1010: if(next_bit) state <= 4'b1011; // bit 24'b1011: if(next_bit) state <= 4'b1100; // bit 34'b1100: if(next_bit) state <= 4'b1101; // bit 44'b1101: if(next_bit) state <= 4'b1110; // bit 54'b1110: if(next_bit) state <= 4'b1111; // bit 64'b1111: if(next_bit) state <= 4'b0001; // bit 74'b0001: if(next_bit) state <= 4'b0000; // stop bitdefault: state <= 4'b0000;
endcase

请注意,我们使用了一个 "next_bit "信号,以便从一个比特到另一个比特。

reg [2:0] bit_spacing;always @(posedge clk)
if(state==0)bit_spacing <= 0;
else
if(Baud8Tick)bit_spacing <= bit_spacing + 1;wire next_bit = (bit_spacing==7); 

最后,移位寄存器将数据位收集起来。

reg [7:0] RxD_data;
always @(posedge clk) if(Baud8Tick && next_bit && state[3]) RxD_data <= {RxD_bit, RxD_data[7:1]}; 
完整代码
module async_receiver(input wire clk,input wire RxD,output reg RxD_data_ready,input wire RxD_clear,output reg [7:0] RxD_data  // data received, valid only (for one clock cycle) when RxD_data_ready is asserted
);parameter ClkFrequency = 25000000; // 25MHz
parameter Baud = 115200;parameter Oversampling = 8;  // needs to be a power of 2
// we oversample the RxD line at a fixed rate to capture each RxD data bit at the "right" time
// 8 times oversampling by default, use 16 for higher quality reception// generate
// 	if(ClkFrequency<Baud*Oversampling) ASSERTION_ERROR PARAMETER_OUT_OF_RANGE("Frequency too low for current Baud rate and oversampling");
// 	if(Oversampling<8 || ((Oversampling & (Oversampling-1))!=0)) ASSERTION_ERROR PARAMETER_OUT_OF_RANGE("Invalid oversampling value");
// endgenerate// We also detect if a gap occurs in the received stream of characters
// That can be useful if multiple characters are sent in burst
//  so that multiple characters can be treated as a "packet"
wire RxD_idle;  // asserted when no data has been received for a while
reg RxD_endofpacket; // asserted for one clock cycle when a packet has been detected (i.e. RxD_idle is going high)reg [3:0] RxD_state = 0;`ifdef SIMULATION
wire RxD_bit = RxD;
wire sampleNow = 1'b1;  // receive one bit per clock cycle`else
wire OversamplingTick;
BaudTickGen #(ClkFrequency, Baud, Oversampling) tickgen(.clk(clk), .enable(1'b1), .tick(OversamplingTick));// synchronize RxD to our clk domain
reg [1:0] RxD_sync = 2'b11;
always @(posedge clk) if(OversamplingTick) RxD_sync <= {RxD_sync[0], RxD};// and filter it
reg [1:0] Filter_cnt = 2'b11;
reg RxD_bit = 1'b1;always @(posedge clk)
if(OversamplingTick)
beginif(RxD_sync[1]==1'b1 && Filter_cnt!=2'b11) Filter_cnt <= Filter_cnt + 1'd1;else if(RxD_sync[1]==1'b0 && Filter_cnt!=2'b00) Filter_cnt <= Filter_cnt - 1'd1;if(Filter_cnt==2'b11) RxD_bit <= 1'b1;elseif(Filter_cnt==2'b00) RxD_bit <= 1'b0;
end// and decide when is the good time to sample the RxD line
function integer log2(input integer v); begin log2=0; while(v>>log2) log2=log2+1; end endfunction
localparam l2o = log2(Oversampling);
reg [l2o-2:0] OversamplingCnt = 0;
always @(posedge clk) if(OversamplingTick) OversamplingCnt <= (RxD_state==0) ? 1'd0 : OversamplingCnt + 1'd1;
wire sampleNow = OversamplingTick && (OversamplingCnt==Oversampling/2-1);
`endif// now we can accumulate the RxD bits in a shift-register
always @(posedge clk)
case(RxD_state)4'b0000: if(~RxD_bit) RxD_state <= `ifdef SIMULATION 4'b1000 `else 4'b0001 `endif;  // start bit found?4'b0001: if(sampleNow) RxD_state <= 4'b1000;  // sync start bit to sampleNow4'b1000: if(sampleNow) RxD_state <= 4'b1001;  // bit 04'b1001: if(sampleNow) RxD_state <= 4'b1010;  // bit 14'b1010: if(sampleNow) RxD_state <= 4'b1011;  // bit 24'b1011: if(sampleNow) RxD_state <= 4'b1100;  // bit 34'b1100: if(sampleNow) RxD_state <= 4'b1101;  // bit 44'b1101: if(sampleNow) RxD_state <= 4'b1110;  // bit 54'b1110: if(sampleNow) RxD_state <= 4'b1111;  // bit 64'b1111: if(sampleNow) RxD_state <= 4'b0010;  // bit 74'b0010: if(sampleNow) RxD_state <= 4'b0000;  // stop bitdefault: RxD_state <= 4'b0000;
endcasealways @(posedge clk)
if(sampleNow && RxD_state[3]) RxD_data <= {RxD_bit, RxD_data[7:1]};//reg RxD_data_error = 0;
always @(posedge clk)
beginif(RxD_clear)RxD_data_ready <= 0;elseRxD_data_ready <= RxD_data_ready | (sampleNow && RxD_state==4'b0010 && RxD_bit);  // make sure a stop bit is received//RxD_data_error <= (sampleNow && RxD_state==4'b0010 && ~RxD_bit);  // error if a stop bit is not received
end`ifdef SIMULATION
assign RxD_idle = 0;
`else
reg [l2o+1:0] GapCnt = 0;
always @(posedge clk) if (RxD_state!=0) GapCnt<=0; else if(OversamplingTick & ~GapCnt[log2(Oversampling)+1]) GapCnt <= GapCnt + 1'h1;
assign RxD_idle = GapCnt[l2o+1];
always @(posedge clk) RxD_endofpacket <= OversamplingTick & ~GapCnt[l2o+1] & &GapCnt[l2o:0];
`endifendmodule
5.How to use the RS-232 transmitter and receiver

该设计允许通过 PC 控制几个 FPGA 引脚(通过 PC 的串行端口)。

它在 FPGA 上创建了 8 个输出(端口名为 "GPout")。FPGA 接收到的任何字符都会更新 GPout。
同时在 FPGA 上创建 8 个输入端(名为 "GPin "的端口)。每当 FPGA 接收到一个字符,GPin 就会传输一次。

GP 输出可用于从电脑远程控制任何东西,可能是 LED 或咖啡机…

module serialGPIO(input clk,input RxD,output TxD,output reg [7:0] GPout,  // general purpose outputsinput [7:0] GPin  // general purpose inputs
);wire RxD_data_ready;
wire [7:0] RxD_data;
async_receiver RX(.clk(clk), .RxD(RxD), .RxD_data_ready(RxD_data_ready), .RxD_data(RxD_data));
always @(posedge clk) if(RxD_data_ready) GPout <= RxD_data;async_transmitter TX(.clk(clk), .TxD(TxD), .TxD_start(RxD_data_ready), .TxD_data(GPin));
endmodule

龙芯杯个人赛串口信号连接

// | 0xBFD003F8 | [7:0] | 串口数据,读、写地址分别表示串口接收、发送一个字节 |
// | 0xBFD003FC | [0]   | 只读,为1时表示串口空闲,可发送数据                |
// | 0xBFD003FC | [1]   | 只读,为1时表示串口收到数据                        |
module uart(input wire clk,input wire resetn,// read and write from cpu// input   wire          conf_en,     input   wire          conf_re,conf_we,// input   wire   [3 :0] conf_wen,      input   wire   [31:0] conf_addr,    input   wire   [31:0] conf_wdata,   output  wire   [31:0] conf_rdata,// read and write to device on board//直连串口信号output wire txd,  //直连串口发送端input  wire rxd  //直连串口接收端// output reg [15:0] led,// input wire [7:0] switch
);
wire read_flag;
wire write_uart;
wire read_uart;
assign read_flag = ((conf_addr == 32'hbfd003fc) && (conf_re)) ? 1'b1:1'b0;
assign read_uart = ((conf_addr == 32'hbfd003f8) && (conf_re)) ? 1'b1:1'b0;
assign write_uart = ((conf_addr == 32'hbfd003f8) && (conf_we)) ? 1'b1:1'b0;wire [7:0] ext_uart_wdata;// write data// buffers
reg [7:0] ext_uart_rbuffer;// read buffer
reg [1:0] ext_uart_flag; // uart flag for read and write at addr 0xbfd003fc
assign conf_rdata = read_flag?{30'h0,ext_uart_flag}:read_uart?{24'h0,ext_uart_rbuffer}:32'h0;wire [7:0] ext_uart_rx;
wire ext_uart_ready,ext_uart_clear;wire ext_uart_busy; // transmitter busy flag
reg ext_uart_start; // transmitter start work signal
always @(posedge clk) beginif(!resetn)ext_uart_flag <= 2'h1;else beginif(ext_uart_ready)ext_uart_flag[1] <= 1;else if(read_uart)  ext_uart_flag[1] <= 0;// write flag// if(write_uart)//     ext_uart_flag[0] <= 0;// else if(!ext_uart_busy)//     ext_uart_flag[0] <= 1;if (!ext_uart_busy)ext_uart_flag[0] <= 1;else if(write_uart)ext_uart_flag[0] <= 0;endend//uart reciever
async_receiver #(.ClkFrequency(60000000),.Baud(9600)) ext_uart_r(.clk(clk),.RxD(rxd),.RxD_data_ready(ext_uart_ready),.RxD_clear(ext_uart_clear),.RxD_data(ext_uart_rx));
// store RxD_data to read buffer and clear RxD_data after store
assign ext_uart_clear = ext_uart_ready;
// assign ext_uart_rdata = ext_uart_rx;
always @(posedge clk) beginif(ext_uart_ready)ext_uart_rbuffer <= ext_uart_rx;
end
// assign ext_uart_rbuffer = ext_uart_rx;always @(posedge clk) beginif(!ext_uart_busy && write_uart)ext_uart_start <= 1'b1;else ext_uart_start <= 1'b0;
endwire [7:0] ext_uart_tx;// write data
reg [7:0] last_data;
always @(posedge clk) beginlast_data <= ext_uart_tx[7:0];
end
assign ext_uart_tx = write_uart?conf_wdata[7:0]:last_data;
// assign ext_uart_tx = write_uart?conf_wdata[7:0]:8'h0;async_transmitter #(.ClkFrequency(6000_0000),.Baud(9600)) ext_uart_t(.clk(clk),.TxD(txd),.TxD_busy(ext_uart_busy),.TxD_start(ext_uart_start),.TxD_data(ext_uart_tx) // transmit the data in buffer to txd);

这篇关于龙芯杯个人赛串口——做一个 UART串口——RS-232的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/543254

相关文章

安卓开发板_联发科MTK开发评估套件串口调试

串口调试 如果正在进行lk(little kernel ) 或内核开发,USB 串口适配器( USB 转串口 TTL 适配器的简称)对于检查系统启动日志非常有用,特别是在没有图形桌面显示的情况下。 1.选购适配器 常用的许多 USB 转串口的适配器,按芯片来分,有以下几种: CH340PL2303CP2104FT232 一般来说,采用 CH340 芯片的适配器,性能比较稳定,价

VB和51单片机串口通信讲解(只针对VB部分)

标记:该篇文章全部搬自如下网址:http://www.crystalradio.cn/thread-321839-1-1.html,谢谢啦            里面关于中文接收的部分,大家可以好好学习下,题主也在研究中................... Commport;设置或返回串口号。 SettingS:以字符串的形式设置或返回串口通信参数。 Portopen:设置或返回串口

龙芯小本debian无线(wifi)连接设置

本人有一台龙芯8089b小本,已被我重装了debian系统。由于学习nodeJs,所以想用它当node服务器; 正准备下载node等时发现命令模式下不能自动连接无线,于是网上找来一篇debian连接wifi的文章, 来源参考http://blog.163.com/wangpeng922@126/blog/static/64133083201211131100539/ 查看网卡信息:#

龙芯小本8089b安装debian7+java+tomcat+mysql

之前团购了一个龙芯小本8089b,cpu很差劲,内存也只有1G,根本不能用来娱乐,于是想把它换个纯字符系统,然后搭建java服务器平台,用作局域网固定的mini服务器开发用。 以下是我搭建过程,当然实际比这做的多,这是多次尝试之后的成功过程,分享给大家,自己也做个笔记 debian7纯字符系统安装龙芯专有java安装tomcat安装mysql安装 一、debian7安装参考 圣域☆

龙芯+FreeRTOS+LVGL实战笔记(新)——05部署主按钮

本专栏是笔者另一个专栏《龙芯+RT-Thread+LVGL实战笔记》的姊妹篇,主要的区别在于实时操作系统的不同,章节的安排和任务的推进保持一致,并对源码做了改进和优化,各位可以先到本人主页下去浏览另一专栏的博客列表(目前已撰写36篇,图1所示),再决定是否订阅。此外,也可以前往本人在B站的视频合集(图2所示)观看所有演示视频,合集首个视频链接为: 借助RT-Thread和LVGL

RS在不同设备间同步文件

参考: 1. Resilio(BtSync)搭建 2. 使用Resilio Sync共享文件【附操作指南】 4. Linux 下挂载新硬盘方法 5. Partition 1 does not start on physical sector boundary. 6. Ubuntu 16.04添加开机启动脚本的方法 7. Ubuntu 16.04以普通用户身份开机启动 8. Ubunt

java RXTXcomm 串口通信

RXTXcomm:提供了 Windows x64, x86, ia64 and Linux x86, x86_64等操作系统支持。 下载地址 http://fizzed.com/oss/rxtx-for-java 使用RXTXcomm首先要安排JRE环境,开发IED可能eclipse. 1.下载系统相应的RXTXcomm。 2.将rxtxSerial.dll、rxtxParallel.dl

Nodejs 串口通信 : websocket , serialport

最近在学习如何实现web页面和串口间通信,网页请求使用websocket,实现的基本功能如下: 1、基本需求:硬件:有两个信号灯(TLA-505-1T),一个485继电器(开关),电压转换器,工业触屏一体机。 2、原理图:                  3工作原理: 首先一体机中采用node开发服务器,网页请求采用websocket协议,直接放代码了: var express

C# WPF燃气报警器记录读取串口工具

C# WPF燃气报警器记录读取串口工具 概要串口帧数据布局文件代码文件运行效果源码下载 概要 符合国标文件《GB+15322.2-2019.pdf》串口通信协议定义;可读取燃气报警器家用版设备历史记录信息等信息; 串口帧数据 串口通信如何确定一帧数据接收完成是个麻烦事,本文采用最后一次数据接收完成后再过多少毫秒认为一帧数据接收完成,开始解析出来。每次接收到数据更新一次re

笔记 14 : 彭老师课本第 8 章, UART : 寄存器介绍 ,

(99) 继续介绍 uart 的关于通道的 一整套 寄存器, UCON 等: ++ 接着介绍寄存器 UTRSTAT : ++ 接着介绍读写数据的寄存器: ++ 设置 uart 的波特率,有关的寄存器: ++ (100) (101) 谢谢