论文阅读——UniRepLKNet

2023-12-27 08:45
文章标签 阅读 论文 unireplknet

本文主要是介绍论文阅读——UniRepLKNet,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

UniRepLKNet: A Universal Perception Large-Kernel ConvNet for Audio, Video, Point Cloud, Time-Series and Image Recognition

        当我们将一个3×3的conv添加到一个小卷积核ConvNet中时,我们预计它会同时产生三种效果——1)使感受野更大,2)增加空间模式的抽象层次(例如,从角度和纹理到对象的形状),3)通过使其更深入,引入更多可学习的参数和非线性,来提高模型的一般表示能力。相比之下,我们认为,在大卷积核架构中,这三种影响应该解耦,因为模型应该利用大卷积核的实质性优势——即不深入就可以看到广泛的东西。由于在扩大感受野时,增加卷积核大小比堆叠更多层要有效得多,因此可以用少量的大卷积核层来建立足够的ERF,从而可以为其他有效结构节省计算预算,这些结构在增加空间模式的抽象层次或通常增加深度方面更有效。

Dilated Reparam Block

膨胀卷积中忽略输入的像素相当于将额外的零项插入到conv卷积核中,因此具有小卷积核的膨胀conv层可以等效地转换为具有稀疏较大内核的非膨胀(即,r=1)层。

原来的卷积核:

插零后:

可以通过步长为r的转置卷积实现:

Reparam块,它使用一个非膨胀的小卷积核和多个膨胀的小卷积核层来增强非膨胀的大卷积核conv层。大核大小K,平行的卷积层大小k,膨胀率r,

另外设计了四个结构加深模型:

不同卷积核:

不同模块:

不同大小模型:

在不同任务的表现:

这篇关于论文阅读——UniRepLKNet的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/542577

相关文章

JAVA智听未来一站式有声阅读平台听书系统小程序源码

智听未来,一站式有声阅读平台听书系统 🌟 开篇:遇见未来,从“智听”开始 在这个快节奏的时代,你是否渴望在忙碌的间隙,找到一片属于自己的宁静角落?是否梦想着能随时随地,沉浸在知识的海洋,或是故事的奇幻世界里?今天,就让我带你一起探索“智听未来”——这一站式有声阅读平台听书系统,它正悄悄改变着我们的阅读方式,让未来触手可及! 📚 第一站:海量资源,应有尽有 走进“智听

AI hospital 论文Idea

一、Benchmarking Large Language Models on Communicative Medical Coaching: A Dataset and a Novel System论文地址含代码 大多数现有模型和工具主要迎合以患者为中心的服务。这项工作深入探讨了LLMs在提高医疗专业人员的沟通能力。目标是构建一个模拟实践环境,人类医生(即医学学习者)可以在其中与患者代理进行医学

论文翻译:arxiv-2024 Benchmark Data Contamination of Large Language Models: A Survey

Benchmark Data Contamination of Large Language Models: A Survey https://arxiv.org/abs/2406.04244 大规模语言模型的基准数据污染:一项综述 文章目录 大规模语言模型的基准数据污染:一项综述摘要1 引言 摘要 大规模语言模型(LLMs),如GPT-4、Claude-3和Gemini的快

论文阅读笔记: Segment Anything

文章目录 Segment Anything摘要引言任务模型数据引擎数据集负责任的人工智能 Segment Anything Model图像编码器提示编码器mask解码器解决歧义损失和训练 Segment Anything 论文地址: https://arxiv.org/abs/2304.02643 代码地址:https://github.com/facebookresear

论文翻译:ICLR-2024 PROVING TEST SET CONTAMINATION IN BLACK BOX LANGUAGE MODELS

PROVING TEST SET CONTAMINATION IN BLACK BOX LANGUAGE MODELS https://openreview.net/forum?id=KS8mIvetg2 验证测试集污染在黑盒语言模型中 文章目录 验证测试集污染在黑盒语言模型中摘要1 引言 摘要 大型语言模型是在大量互联网数据上训练的,这引发了人们的担忧和猜测,即它们可能已

OmniGlue论文详解(特征匹配)

OmniGlue论文详解(特征匹配) 摘要1. 引言2. 相关工作2.1. 广义局部特征匹配2.2. 稀疏可学习匹配2.3. 半稠密可学习匹配2.4. 与其他图像表示匹配 3. OmniGlue3.1. 模型概述3.2. OmniGlue 细节3.2.1. 特征提取3.2.2. 利用DINOv2构建图形。3.2.3. 信息传播与新的指导3.2.4. 匹配层和损失函数3.2.5. 与Super

软件架构模式:5 分钟阅读

原文: https://orkhanscience.medium.com/software-architecture-patterns-5-mins-read-e9e3c8eb47d2 软件架构模式:5 分钟阅读 当有人潜入软件工程世界时,有一天他需要学习软件架构模式的基础知识。当我刚接触编码时,我不知道从哪里获得简要介绍现有架构模式的资源,这样它就不会太详细和混乱,而是非常抽象和易

BERT 论文逐段精读【论文精读】

BERT: 近 3 年 NLP 最火 CV: 大数据集上的训练好的 NN 模型,提升 CV 任务的性能 —— ImageNet 的 CNN 模型 NLP: BERT 简化了 NLP 任务的训练,提升了 NLP 任务的性能 BERT 如何站在巨人的肩膀上的?使用了哪些 NLP 已有的技术和思想?哪些是 BERT 的创新? 1标题 + 作者 BERT: Pre-trainin

[论文笔记]LLM.int8(): 8-bit Matrix Multiplication for Transformers at Scale

引言 今天带来第一篇量化论文LLM.int8(): 8-bit Matrix Multiplication for Transformers at Scale笔记。 为了简单,下文中以翻译的口吻记录,比如替换"作者"为"我们"。 大语言模型已被广泛采用,但推理时需要大量的GPU内存。我们开发了一种Int8矩阵乘法的过程,用于Transformer中的前馈和注意力投影层,这可以将推理所需

【阅读文献】一个使用大语言模型的端到端语音概要

摘要 ssum框架(Speech Summarization)为了 从说话人的语音提出对应的文本二题出。 ssum面临的挑战: 控制长语音的输入捕捉 the intricate cross-mdoel mapping 在长语音输入和短文本之间。 ssum端到端模型框架 使用 Q-Former 作为 语音和文本的中介连接 ,并且使用LLMs去从语音特征正确地产生文本。 采取 multi-st