【影像组学入门百问】#41--#43

2023-12-27 05:44
文章标签 影像 入门 41 组学 43 百问 --#

本文主要是介绍【影像组学入门百问】#41--#43,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

#41-影像组学研究中离散化方法选择

目前,尽管许多研究倾向于固定的bin数而非固定的bin宽度,但并没有硬性证据表明在所有情况下固定的bin宽度或固定的bin数更优。因此,PyRadiomics实现了设置固定的bin数(binCount)和固定的bin宽度(binWidth,默认值)两种选项。

之所以选择固定的bin宽度作为默认参数,部分原因在于PET研究表明,采用固定的bin宽度能更好地保证特征的可重复性。此外,以下示例最能说明我们的理由:假设有两幅图像和两个ROI,第一幅图像的灰度值范围为{0-100},第二幅图像的灰度值范围为{0-10}。如果您使用固定的bin数,则1(离散化)灰度值差异的“意义”是不同的(在第一个ROI中,它表示10个灰度值的差异,在第二个ROI中只是1)。这意味着您所看到的基于纹理的对比度有很大不同。

这个例子假设两个图像的原始灰度值意义相同,在灰度值明确/绝对的图像(如CT的HU值、PET成像中的SUV值)中,这是成立的。但是,在任意/相对灰度值的图像中(例如MR中的信号强度),这不一定成立。在后一种情况下,我们仍然建议采用固定的bin宽度,但要进行额外的预处理(例如归一化),以确保更好的灰度值可比性。在这种情况下,使用固定的bin数也是可能的,但计算出的特征仍可能受到图像中灰度值范围的影响,以及由于原始灰度值不太可比而产生的噪声。此外,无论采用什么类型的灰度值离散化方法,都必须采取措施确保良好的可比性,因为一阶特征主要使用原始灰度值(无离散化)。

最后,有一个关于每个bin宽度该选择多少的问题。目前文献中并没有具体的指导建议,而我们尝试选择一个bin宽度,以便最终的bin数量在30到130之间,这在文献中针对固定的bin数显示了很好的可重复性和性能[2]。这允许ROI中强度的不同范围,同时仍然保持纹理特征的信息性(和病变之间的可比性)。

#42-PyRadiomics是否遵循IBSI特征定义?

在很大程度上,是的。

PyRadiomics开发也参与了IBSI团队的标准化工作。然而,PyRadiomics和IBSI文档中定义的特征提取之间还是存在一些差异。这些差异出现在存在几种同样有效的替代方案的地方。在其中一些情况下,PyRadiomics选择了一种替代方案,而IBSI标准推荐另一种。为了保持 PyRadiomics开发的一致性,我们选择不改变PyRadiomics的实现,而是记录差异。

最值得注意的是灰度离散化(仅针对固定bin大小类型)和重采样的差异。这些差异不能仅通过自定义设置进行修正,而需要使用自定义函数替换:

分箱:在使用固定bin宽度进行灰度离散化时(又称IBSI:FBS,固定bin大小),如果设置了重新分割(最明显的是情况A和C),IBSI会计算从重新分割范围的最小值(如果是绝对重新分割)或最小强度(如果是σ重新分割)开始的等间距bin边缘。

在PyRadiomics中,使用固定bin宽度的灰度离散化始终使用从0开始的等间距bin边缘,确保最低灰度级被离散化到第一个bin。无论重新分割等情况如何。

重采样:

网格对齐:在IBSI中,通过对齐图像的中心来对齐重采样网格,而在PyRadiomics中,我们对齐原点体素的角。这可能导致稍微不同的插值结果,甚至重采样图像和ROI的大小略有不同,从而导致提取的特征值之间的差异。灰度值舍入:在IBSI中,他们认为,如果原始强度值来自某些较低精度的数据类型,重采样值(通常是64位的浮点数)应该重新采样到类似的分辨率。在IBSI幻影的情况下,重采样到最近的整数。PyRadiomics没有实现这一点,因为差异可能很小,因此增加复杂性而非增加提取值的意义。特别是考虑到在计算大多数(除一阶外)特征之前,灰度值都是离散化的。如果进行了某种归一化,则灰度值的意义也会发生变化。这里的差异是因为小的舍入差异可能导致体素被分配到不同一个bin,这可能会导致特征值结果的显著变化,特别是在较小的ROI中。

掩膜重采样:在IBSI中,还可以为掩膜重采样选择不同的插值器,并附加阈值以检索二值掩膜。这仅在掩膜限于零和非零(即1)值时有效。PyRadiomics还支持具有不同值标签的掩膜,允许通过指示不同的标签值从同一掩膜文件中提取不同的ROI。为防止任何不正确的重新分配,PyRadiomics强制掩膜重采样为最近邻。

接下来,还有一些差异可以通过自定义设置解决,本例仅适用于配置E,即同时执行绝对和σ重新分割。在PyRadiomics中,两种类型都已实现,但一次只能选择一种。为了模拟应用两种类型,我计算了重新分割后的绝对范围,并将其用作绝对重新分割范围:[-718, 400]

最后,在PyRadiomics和IBSI中,

一阶特征:峰度的计算存在差异。IBSI计算的是超额峰度,即峰度减3。PyRadiomics计算的是峰度,比IBSI高3。这个差异的原因是高斯分布的峰度为3。

所以总结起来,PyRadiomics结果和IBSI基准之间的差异原因,分别对应各种情况:

配置C:由于灰度离散化和重采样的差异 配置D:由于重采样的差异 配置E:由于重采样和重新分割的差异

#43-PyRadiomics支持哪些模态?2D?3D?彩色?

PyRadiomics并不是为某一特定模态而开发的。PyRadiomics可以处理多种模态,尽管不同模态之间的最佳设置可能有所不同。然而,对输入有一些限制:

灰度图像:PyRadiomics目前不支持从彩色图像或具有复杂值的图像中提取特征。在这些情况下,每个像素/体素具有多个值,而PyRadiomics不知道您如何组合这些值。可以选择一个颜色通道并将其用作输入:

import SimpleITK as sitk

from radiomics import featureextractor

使用参数文件实例化提取器

extractor = featureextractor.RadiomicsFeatureExtractor(r’path/to/params.yml’)

设置掩膜路径

ma_path = ‘path/to/maskfile.nrrd’

label = 1 # 如果您的掩膜中的ROI由其他值标识,请更改此处

加载图像并提取颜色通道

color_channel = 0

im = sitk.ReadImage(r’path/to/image.jpg’)

selector = sitk.VectorIndexSelectionCastImageFilter()

selector.SetIndex(color_channel)

im = selector.Execute(im)

运行提取器

results = extractor.execute(im, ma_path, label=label)

文件格式:目前,PyRadiomics要求图像和掩膜输入是一个指向包含图像/掩膜的单个文件的字符串,或者是一个SimpleITK.Image对象(仅在交互模式下可能)。当使用DICOM时,需要先将单独的文件合并成一个体积,然后提取特征,方法是将其转换为NRRD或NIFTII,或者在python脚本中读取DICOM并从该脚本调用PyRadiomics。另请参阅PyRadiomics支持哪些输入图像和掩膜的文件类型?。

维度:PyRadiomics支持2D和3D输入图像,但请注意,特征类形状仅提取3D形状描述符,而shape2D仅提取2D形状描述符。如果您有一个3D体积,但是一个单切片分割,并希望结果包括2D形状描述符,请启用shape2D并设置force2D=True。这允许您从具有单切片分割的3D体积中提取2D形状特征(但在分割表示多个切片的体积分割时失败)。

这篇关于【影像组学入门百问】#41--#43的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/542040

相关文章

Spring Security 从入门到进阶系列教程

Spring Security 入门系列 《保护 Web 应用的安全》 《Spring-Security-入门(一):登录与退出》 《Spring-Security-入门(二):基于数据库验证》 《Spring-Security-入门(三):密码加密》 《Spring-Security-入门(四):自定义-Filter》 《Spring-Security-入门(五):在 Sprin

数论入门整理(updating)

一、gcd lcm 基础中的基础,一般用来处理计算第一步什么的,分数化简之类。 LL gcd(LL a, LL b) { return b ? gcd(b, a % b) : a; } <pre name="code" class="cpp">LL lcm(LL a, LL b){LL c = gcd(a, b);return a / c * b;} 例题:

Java 创建图形用户界面(GUI)入门指南(Swing库 JFrame 类)概述

概述 基本概念 Java Swing 的架构 Java Swing 是一个为 Java 设计的 GUI 工具包,是 JAVA 基础类的一部分,基于 Java AWT 构建,提供了一系列轻量级、可定制的图形用户界面(GUI)组件。 与 AWT 相比,Swing 提供了许多比 AWT 更好的屏幕显示元素,更加灵活和可定制,具有更好的跨平台性能。 组件和容器 Java Swing 提供了许多

【IPV6从入门到起飞】5-1 IPV6+Home Assistant(搭建基本环境)

【IPV6从入门到起飞】5-1 IPV6+Home Assistant #搭建基本环境 1 背景2 docker下载 hass3 创建容器4 浏览器访问 hass5 手机APP远程访问hass6 更多玩法 1 背景 既然电脑可以IPV6入站,手机流量可以访问IPV6网络的服务,为什么不在电脑搭建Home Assistant(hass),来控制你的设备呢?@智能家居 @万物互联

poj 2104 and hdu 2665 划分树模板入门题

题意: 给一个数组n(1e5)个数,给一个范围(fr, to, k),求这个范围中第k大的数。 解析: 划分树入门。 bing神的模板。 坑爹的地方是把-l 看成了-1........ 一直re。 代码: poj 2104: #include <iostream>#include <cstdio>#include <cstdlib>#include <al

MySQL-CRUD入门1

文章目录 认识配置文件client节点mysql节点mysqld节点 数据的添加(Create)添加一行数据添加多行数据两种添加数据的效率对比 数据的查询(Retrieve)全列查询指定列查询查询中带有表达式关于字面量关于as重命名 临时表引入distinct去重order by 排序关于NULL 认识配置文件 在我们的MySQL服务安装好了之后, 会有一个配置文件, 也就

音视频入门基础:WAV专题(10)——FFmpeg源码中计算WAV音频文件每个packet的pts、dts的实现

一、引言 从文章《音视频入门基础:WAV专题(6)——通过FFprobe显示WAV音频文件每个数据包的信息》中我们可以知道,通过FFprobe命令可以打印WAV音频文件每个packet(也称为数据包或多媒体包)的信息,这些信息包含该packet的pts、dts: 打印出来的“pts”实际是AVPacket结构体中的成员变量pts,是以AVStream->time_base为单位的显

C语言指针入门 《C语言非常道》

C语言指针入门 《C语言非常道》 作为一个程序员,我接触 C 语言有十年了。有的朋友让我推荐 C 语言的参考书,我不敢乱推荐,尤其是国内作者写的书,往往七拼八凑,漏洞百出。 但是,李忠老师的《C语言非常道》值得一读。对了,李老师有个官网,网址是: 李忠老师官网 最棒的是,有配套的教学视频,可以试看。 试看点这里 接下来言归正传,讲解指针。以下内容很多都参考了李忠老师的《C语言非

MySQL入门到精通

一、创建数据库 CREATE DATABASE 数据库名称; 如果数据库存在,则会提示报错。 二、选择数据库 USE 数据库名称; 三、创建数据表 CREATE TABLE 数据表名称; 四、MySQL数据类型 MySQL支持多种类型,大致可以分为三类:数值、日期/时间和字符串类型 4.1 数值类型 数值类型 类型大小用途INT4Bytes整数值FLOAT4By

【QT】基础入门学习

文章目录 浅析Qt应用程序的主函数使用qDebug()函数常用快捷键Qt 编码风格信号槽连接模型实现方案 信号和槽的工作机制Qt对象树机制 浅析Qt应用程序的主函数 #include "mywindow.h"#include <QApplication>// 程序的入口int main(int argc, char *argv[]){// argc是命令行参数个数,argv是