本文主要是介绍二叉树的三种先序后序中序遍历的互相推出(例UVA 536 - Tree Recovery),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
关于树的先序中序后序遍历
由先序中序推后序
因为 先序:根 左 右
中序:左 根 右
后序:右 根 左
根据他们的对应关系推出树
1,先序遍历 中序遍历推后序遍历:
#include <iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
using namespace std;const int maxn=50;
void tree(int n,char *s1, char *s2,char *s) //构建树
{if(n<=0)return;int p= strchr(s2,s1[0])-s2; // 在中序遍历中寻找根的位置tree(p,s1+1,s2,s); // 生成左子树,tree(n-p-1,s1+p+1,s2+p+1,s+p); // 生成右子树s[n-1]=s1[0]; // 将先序的前值赋给后序的末值
}
int main()
{char s[maxn],s1[maxn],s2[maxn];while(~(scanf("%s%s",&s1,&s2))){int n=strlen(s1);tree(n,s1,s2,s);s[n]='\0';printf("%s\n",s);}return 0;
}
以上为 UVA 536 - Tree Recovery
点击打开链接 (二叉树)ac代码
但是。。。
由后序 中序去推前序崩掉了 。。。。可能是因为推的不行吧
从网上看了看思路思考一番,蒙出来了
2,先序遍历 中序遍历推后序遍历:
#include <iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
using namespace std;const int maxn=50;
int l;
void tree(int n,char *s1, char *s2,char *s)
{if(n<=0)return;int p=0;for(;p<n;p++){if(s2[p]==s1[n-1])break;}tree(p,s1,s2,s+1);tree(n-p-1,s1+p,s2+p+1,s+p+1);s[0]=s1[n-1];}
int main()
{char s[maxn],s1[maxn],s2[maxn];while(~(scanf("%s%s",s2,s1))){memset(s,0,sizeof(s));int l=strlen(s1);tree(l,s1,s2,s);s[l]='\0';printf("%s\n",s);}return 0;
}
关于借鉴的大神的代码
/***************************************************************************/ /*已知中序、后序遍历,求前序遍历*/ /***************************************************************************/ #include <iostream> #include <fstream> #include <string> using namespace std; struct TreeNode { struct TreeNode* left; struct TreeNode* right; char elem; }; TreeNode* BinaryTreeFromOrderings(char* inorder, char* aftorder, int length) { if(length == 0) { return NULL; } TreeNode* node = new TreeNode;//Noice that [new] should be written out. node->elem = *(aftorder+length-1); cout<<node->elem; int rootIndex = 0; for(;rootIndex < length; rootIndex++)//a variation of the loop { if(inorder[rootIndex] == *(aftorder+length-1)) break; } node->left = BinaryTreeFromOrderings(inorder, aftorder , rootIndex); node->right = BinaryTreeFromOrderings(inorder + rootIndex + 1, aftorder + rootIndex , length - (rootIndex + 1)); return node; } int main(int argc, char** argv) { printf("Question: 已知中序、后序遍历,求前序遍历\n\n"); char* in="ADEFGHMZ"; //中序 char* af="AEFDHZMG"; //后序 cout<<"中序是:"<<in<<endl; cout<<"后序是:"<<af<<endl<<endl; cout<<"前序是:"; BinaryTreeFromOrderings(in, af, 8); printf("\n\n"); return 0; }
/***************************************************************************/ /*已知前序、中序遍历,求后序遍历*/
/***************************************************************************/ #include <iostream>
#include <fstream>
#include <string> using namespace std; struct TreeNode
{ struct TreeNode* left; struct TreeNode* right; char elem;
}; void BinaryTreeFromOrderings(char* inorder, char* preorder, int length)
{ if(length == 0) { //cout<<"invalid length"; return; } TreeNode* node = new TreeNode;//Noice that [new] should be written out. node->elem = *preorder; int rootIndex = 0; for(;rootIndex < length; rootIndex++) { if(inorder[rootIndex] == *preorder) break; } //Left BinaryTreeFromOrderings(inorder, preorder +1, rootIndex); //Right BinaryTreeFromOrderings(inorder + rootIndex + 1, preorder + rootIndex + 1, length - (rootIndex + 1)); cout<<node->elem; return;
} int main(int argc, char* argv[])
{ printf("Question: 已知前序、中序遍历,求后序遍历\n\n"); char* pr="GDAFEMHZ";//前序 char* in="ADEFGHMZ";//中序 cout<<"前序是:"<<pr<<endl; cout<<"中序是:"<<in<<endl<<endl; cout<<"后序是:"; BinaryTreeFromOrderings(in, pr, 8); printf("\n\n"); return 0;
来源
点击打开链接
还有非递归求法(点击打开链接)
完美,以后再细看一次
这篇关于二叉树的三种先序后序中序遍历的互相推出(例UVA 536 - Tree Recovery)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!