Attention U-Net:Learning Where to Look for the Pancreas 阅读记录

2023-12-26 14:30

本文主要是介绍Attention U-Net:Learning Where to Look for the Pancreas 阅读记录,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

阅读目的:老师分享

标题:Attention U-Net:Learning Where to Look for the Pancreas(学习在哪里寻找胰腺)

作者团队:Ozan Oktay 生物医学图像分析组,帝国理工学院,伦敦,英国伦敦

来源:arXiv 2018

源码链接:https://github.com/ozan-oktay/Attention-Gated-Networks

数据集链接:https://github.com/ozan-oktay/Attention-Gated-Networks


摘要部分笔记:

1、提出的应用于医学图像的attention gate(AG)可以使模型自动学习聚焦于不同形状和大小的目标结构;

2、使用AGs训练的模型可以再抑制输入图像中的无关区域,同时突出对特定任务有用的显著特征;

3、AGs可以很容易地集成到标准CNN架构中,如U-Net模型,以最小的计算开心同时增加模型的敏感度(sensitivity)和预测精度(accuracy)

4、在两个大型CT腹部数据集上对提出的attention U-Net结构进行了评估,用于多类图像分割。实验结果表明,AGs在保持计算效率的同时,能持续提高U-Net在不同数据集和训练规模下的预测性能

 

介绍部分笔记(含文献综述):

1、在介绍动机(讲故事)时,着重说明本文提出的改进是针对级联框架的:

(1)FCN和U-Net在面对目标区域在形状和大小方便表现出很大的患者间差异时,这些结构依赖于多级级联CNN

(2)级联框架提取ROI,并对特定ROI进行dense prediction(机制类似于先定位再预测)

(3)但是级联框架占用了更多地计算资源,并导致了模型参数的冗余,例如级联中的所有模型都重复地提取类似的低级特征。

2、可训练注意力是通过设计强制执行的,分为硬注意力和软注意力。

硬注意力,例如迭代区域建议和裁剪,通常是不可微的,并且依赖于强化学习来进行参数更新,这使得模型训练更加困难;

软注意是概率性的,利用标准的反向传播,而不需要蒙特卡罗采样。

3、提到的几个不了解的概念:

(1)Moreover, our approach can be used for dense predictions since we do not perform adaptive pooling.

dense prediction 密集预测:标注出图像中每个像素点的对象类别,要求不但给出具体目标的位置,还要描绘物体的边界,如图像分割、语义分割、边缘检测等等。(绝了,只是换了个说法)

adaptive pooling 自适应池:自适应池化Adaptive Pooling与标准的Max/AvgPooling区别在于,自适应池化Adaptive Pooling会根据输入的参数来控制输出output_size,而标准的Max/AvgPooling是通过kernel_size,stride与padding来计算output_size(当我们使用Adaptive Pooling时,这个问题就变成了由已知量input_size,output_size求解kernel_size与stride)

从文中的意思是密集预测与自适应池化不能共存

 

算法部分笔记:

1、整体结构图

 

2、Attention Gates的结构

图中的xl为图1的绿色箭头,将深层次的语义特征输入门中进行特征筛选,g为图1中跳跃连接连接的部分

3、虽然图中没有画出,文中使用深度监督强制中间特征映射在每个图像尺度上具有语义判别性,这有助于确保不同尺度的注意单位能够影响对大范围图像前景内容的响应。

 

实验部分笔记:

1、实验结果展示(与U-Net比较)

列出来的分别是胰腺,脾脏,肾脏

从这个图来看,应该是multi-class分割

2、增加U-Net参数后的结果

 

简要总结:

1、这个Attention Gate的结构感觉已经出现在脑子里了,没有什么惊艳的感觉,加在跳跃连接上,更是满满地既视感,总感觉我们之前画过类似的结构,只不过attention模块里面的结构有些区别

2、文中证明了在跳跃连接上进行操作是可行的,并且文中似乎实现了对多类器官应用多个AG,这样的话就可以使用一个主框架分别提取不同类别的特征了,但是具体实现方式现在想不到需要参考源码

The filtered feature activations (d-e, i-j) are collected from multiple AGs, where a subset of organs is selected by each gate.

 


 

 

 

 

这篇关于Attention U-Net:Learning Where to Look for the Pancreas 阅读记录的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/539765

相关文章

C#使用Spire.Doc for .NET实现HTML转Word的高效方案

《C#使用Spire.Docfor.NET实现HTML转Word的高效方案》在Web开发中,HTML内容的生成与处理是高频需求,然而,当用户需要将HTML页面或动态生成的HTML字符串转换为Wor... 目录引言一、html转Word的典型场景与挑战二、用 Spire.Doc 实现 HTML 转 Word1

Go语言使用net/http构建一个RESTful API的示例代码

《Go语言使用net/http构建一个RESTfulAPI的示例代码》Go的标准库net/http提供了构建Web服务所需的强大功能,虽然众多第三方框架(如Gin、Echo)已经封装了很多功能,但... 目录引言一、什么是 RESTful API?二、实战目标:用户信息管理 API三、代码实现1. 用户数据

在ASP.NET项目中如何使用C#生成二维码

《在ASP.NET项目中如何使用C#生成二维码》二维码(QRCode)已广泛应用于网址分享,支付链接等场景,本文将以ASP.NET为示例,演示如何实现输入文本/URL,生成二维码,在线显示与下载的完整... 目录创建前端页面(Index.cshtml)后端二维码生成逻辑(Index.cshtml.cs)总结

基于Spring Boot 的小区人脸识别与出入记录管理系统功能

《基于SpringBoot的小区人脸识别与出入记录管理系统功能》文章介绍基于SpringBoot框架与百度AI人脸识别API的小区出入管理系统,实现自动识别、记录及查询功能,涵盖技术选型、数据模型... 目录系统功能概述技术栈选择核心依赖配置数据模型设计出入记录实体类出入记录查询表单出入记录 VO 类(用于

解决hive启动时java.net.ConnectException:拒绝连接的问题

《解决hive启动时java.net.ConnectException:拒绝连接的问题》Hadoop集群连接被拒,需检查集群是否启动、关闭防火墙/SELinux、确认安全模式退出,若问题仍存,查看日志... 目录错误发生原因解决方式1.关闭防火墙2.关闭selinux3.启动集群4.检查集群是否正常启动5.

java中pdf模版填充表单踩坑实战记录(itextPdf、openPdf、pdfbox)

《java中pdf模版填充表单踩坑实战记录(itextPdf、openPdf、pdfbox)》:本文主要介绍java中pdf模版填充表单踩坑的相关资料,OpenPDF、iText、PDFBox是三... 目录准备Pdf模版方法1:itextpdf7填充表单(1)加入依赖(2)代码(3)遇到的问题方法2:pd

Zabbix在MySQL性能监控方面的运用及最佳实践记录

《Zabbix在MySQL性能监控方面的运用及最佳实践记录》Zabbix通过自定义脚本和内置模板监控MySQL核心指标(连接、查询、资源、复制),支持自动发现多实例及告警通知,结合可视化仪表盘,可有效... 目录一、核心监控指标及配置1. 关键监控指标示例2. 配置方法二、自动发现与多实例管理1. 实践步骤

在Spring Boot中集成RabbitMQ的实战记录

《在SpringBoot中集成RabbitMQ的实战记录》本文介绍SpringBoot集成RabbitMQ的步骤,涵盖配置连接、消息发送与接收,并对比两种定义Exchange与队列的方式:手动声明(... 目录前言准备工作1. 安装 RabbitMQ2. 消息发送者(Producer)配置1. 创建 Spr

解决未解析的依赖项:‘net.sf.json-lib:json-lib:jar:2.4‘问题

《解决未解析的依赖项:‘net.sf.json-lib:json-lib:jar:2.4‘问题》:本文主要介绍解决未解析的依赖项:‘net.sf.json-lib:json-lib:jar:2.4... 目录未解析的依赖项:‘net.sf.json-lib:json-lib:jar:2.4‘打开pom.XM

k8s上运行的mysql、mariadb数据库的备份记录(支持x86和arm两种架构)

《k8s上运行的mysql、mariadb数据库的备份记录(支持x86和arm两种架构)》本文记录在K8s上运行的MySQL/MariaDB备份方案,通过工具容器执行mysqldump,结合定时任务实... 目录前言一、获取需要备份的数据库的信息二、备份步骤1.准备工作(X86)1.准备工作(arm)2.手