长篇大论Python生成器

2023-12-26 13:30

本文主要是介绍长篇大论Python生成器,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Python生成器是什么

一句话解释:包含了yield关键字的函数就是生成器,它的返回值是一个生成器对象。我简单画了个示意图:

86ccb37b86f39b22ddc6eb4ce5e22574.png

  • yield相当于return。

  • 函数遇到yield就暂停,保存当前信息,返回yield的值。

  • 在下次执行next()时,从当前位置继续执行。

比较有意思的事情是,曾经有人建议生成器函数不应该使用def,而应该发明一个新的关键字比如gen,但是Python之父Guido并没有同意这样做。

生成器函数的工作原理

先通过一个简单示例来说明生成器的行为:

# 定义一个生成器
>>> def gen_123():
...     yield 1
...     yield 2
...     yield 3
...# 生成器本身是个函数
>>> gen_123
<function gen_123 at 0x0000019F60710790># 返回值是生成器对象
>>> gen_123()
<generator object gen_123 at 0x0000019F606AC040># 生成器也是迭代器
>>> for i in gen_123():
...     print(i)
...     
1
2
3# 验证生成器也是迭代器,定义迭代器g
>>> g = gen_123()# 可以通过next()获取yield生成的下一个元素
>>> next(g)
1
>>> next(g)
2
>>> next(g)
3
>>> next(g)
Traceback (most recent call last):File "<input>", line 1, in <module>
StopIteration

生成器的原理就是:

  1. 生成器函数会创建一个生成器对象。

  2. 把生成器传给next()函数时,生成器函数会执行函数定义体中的下一个yield语句,返回产出的值,并在当前位置暂停。

  3. 函数的定义体返回时,外层的生成器对象会抛出StopIteration异常

yield关键字一般是和for循环搭配使用的,在for循环中会隐式调用next()函数。

生成器的作用其实是解决内存的问题,比如我们都知道Python的正则表达式有一个re.findall()函数,它会把所有匹配到的元素都一次性写入内存中,假如匹配到的数据很多,就会占用大量的内存。为了解决这个问题,Python3有一个re.finditer()函数,返回的就是一个生成器,取值时才生成数据放入内存中,能节省大量内存。

标准库中的生成器函数

实现生成器时要知道标准库中有什么可用,否则很可能会重新发明轮子。有些是内置的,有些在itertools模块中,有些functools模块中。

用于过滤的生成器函数

从输入的可迭代对象中产出元素的子集,而且不修改元素本身。

4b9c70ea33deee3122910581abb1449f.png

用于映射的生成器函数

在输入的单个可迭代对象中的各个元素上做计算,然后返回结果。

2ea0b99373ed8185e2823037a7c58bab.png

合并多个可迭代对象的生成器函数

从输入的多个可迭代对象中产出元素。

a7c9c896ffb90e6f81792be830f0706f.png

把输入的各个元素扩展成多个输出元素的生成器函数

从一个元素中产出多个值,扩展输入的可迭代对象。

4a193edae252f695978006cefb3d8afc.png

用于重新排列元素的生成器函数

产出输入的可迭代对象中的全部元素,不过会以某种方式重新排列。

25f1049754d1bf35ddd2053dfc30170e.png

yield from

yield from是Python3.3新出现的句法,它的作用是把不同的生成器结合在一起使用。

比如生成器函数需要产出另一个生成器生成的值,传统的解决办法是使用for循环:

def chain(*iterables):for it in iterables:for i in it:yield is = "ABC"
t = tuple(range(3))
print(list(chain(s, t)))  # ["A", "B", "C", 0, 1, 2]

改成yield from:

def chain(*iterables):for it in iterables:yield from i

完全代替了内层的for循环。

参考资料:

《流畅的Python》第14章 可迭代的对象、迭代器和生成器

https://www.runoob.com/python3/python3-iterator-generator.html

这篇关于长篇大论Python生成器的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/539589

相关文章

Python调用Orator ORM进行数据库操作

《Python调用OratorORM进行数据库操作》OratorORM是一个功能丰富且灵活的PythonORM库,旨在简化数据库操作,它支持多种数据库并提供了简洁且直观的API,下面我们就... 目录Orator ORM 主要特点安装使用示例总结Orator ORM 是一个功能丰富且灵活的 python O

Python使用国内镜像加速pip安装的方法讲解

《Python使用国内镜像加速pip安装的方法讲解》在Python开发中,pip是一个非常重要的工具,用于安装和管理Python的第三方库,然而,在国内使用pip安装依赖时,往往会因为网络问题而导致速... 目录一、pip 工具简介1. 什么是 pip?2. 什么是 -i 参数?二、国内镜像源的选择三、如何

python使用fastapi实现多语言国际化的操作指南

《python使用fastapi实现多语言国际化的操作指南》本文介绍了使用Python和FastAPI实现多语言国际化的操作指南,包括多语言架构技术栈、翻译管理、前端本地化、语言切换机制以及常见陷阱和... 目录多语言国际化实现指南项目多语言架构技术栈目录结构翻译工作流1. 翻译数据存储2. 翻译生成脚本

如何通过Python实现一个消息队列

《如何通过Python实现一个消息队列》这篇文章主要为大家详细介绍了如何通过Python实现一个简单的消息队列,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录如何通过 python 实现消息队列如何把 http 请求放在队列中执行1. 使用 queue.Queue 和 reque

Python如何实现PDF隐私信息检测

《Python如何实现PDF隐私信息检测》随着越来越多的个人信息以电子形式存储和传输,确保这些信息的安全至关重要,本文将介绍如何使用Python检测PDF文件中的隐私信息,需要的可以参考下... 目录项目背景技术栈代码解析功能说明运行结php果在当今,数据隐私保护变得尤为重要。随着越来越多的个人信息以电子形

使用Python快速实现链接转word文档

《使用Python快速实现链接转word文档》这篇文章主要为大家详细介绍了如何使用Python快速实现链接转word文档功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 演示代码展示from newspaper import Articlefrom docx import

Python Jupyter Notebook导包报错问题及解决

《PythonJupyterNotebook导包报错问题及解决》在conda环境中安装包后,JupyterNotebook导入时出现ImportError,可能是由于包版本不对应或版本太高,解决方... 目录问题解决方法重新安装Jupyter NoteBook 更改Kernel总结问题在conda上安装了

Python如何计算两个不同类型列表的相似度

《Python如何计算两个不同类型列表的相似度》在编程中,经常需要比较两个列表的相似度,尤其是当这两个列表包含不同类型的元素时,下面小编就来讲讲如何使用Python计算两个不同类型列表的相似度吧... 目录摘要引言数字类型相似度欧几里得距离曼哈顿距离字符串类型相似度Levenshtein距离Jaccard相

Python安装时常见报错以及解决方案

《Python安装时常见报错以及解决方案》:本文主要介绍在安装Python、配置环境变量、使用pip以及运行Python脚本时常见的错误及其解决方案,文中介绍的非常详细,需要的朋友可以参考下... 目录一、安装 python 时常见报错及解决方案(一)安装包下载失败(二)权限不足二、配置环境变量时常见报错及

Python中顺序结构和循环结构示例代码

《Python中顺序结构和循环结构示例代码》:本文主要介绍Python中的条件语句和循环语句,条件语句用于根据条件执行不同的代码块,循环语句用于重复执行一段代码,文章还详细说明了range函数的使... 目录一、条件语句(1)条件语句的定义(2)条件语句的语法(a)单分支 if(b)双分支 if-else(