基于 Python 和Surprise库,新手轻松搭建推荐系统

2023-12-25 14:28

本文主要是介绍基于 Python 和Surprise库,新手轻松搭建推荐系统,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

解密基于用户的推荐系统。

1、简介

在数据时代,推荐系统是提升用户体验的重要工具。今天介绍如何使用亚马逊的电影评分数据集创建电影推荐系统。

2、数据加载与探索

首先,通过加载和探索数据集开启数据分析过程。首先导入Pandas和Numpy,这是进行数据处理的基础库。通过检查数据集的前几行、形状、大小和统计摘要进行探索。.head()方法可以让我们一窥数据集的全貌,而.shape方法则展示了数据集的大小。

import pandas as pd
import numpy as np 
amazon = pd. read_csv (" path_to / Amazon . csv")
print ( amazon . head ()
print (" Dataset ␣ shape :", amazon . shape )

3、数据清洗和预处理

为了确保分析的完整性,必须替换缺失值并完善DataFrame。fillna方法可用于处理缺失值,这对于保持数据完整性至关重要。删除不相关的列(如'user_id')可以使分析集中在电影评分上。

Amazon_filtered = amazon . fillna ( value =0)
Amazon_filtered1 = Amazon_filtered . drop ( columns =’user_id ’)

4、深入分析浏览量和评分

通过分析浏览量,分析电影的受欢迎程度,这涉及对评分进行求和并找到最大值。按电影对评分进行求和可以得到一个受欢迎度指标。argmax()函数可以识别出观看次数最多的电影。

Amazon_max_views = Amazon_filtered1 .sum ()
max_views_index = Amazon_max_views . argmax ()
print (" Most_viewed _movie _index :", max_views_index )

5、计算平均评分

通过计算电影的平均评分,可以了解观众的总体满意度。

average_ratings = Amazon_max_views . mean ()
print (" Average_rating :", average_ratings )

6、建立推荐模型:SVD算法

  1. 格式化数据供Surprise使用: 通过准备数据以供Surprise库使用来为推荐做好准备。
from surprise import Reader , Dataset
reader = Reader ( rating_scale =(-1, 10))
data = Dataset . load_from_df ( melt_df . fillna (0) , reader )
  1. 模型训练与评估: 该系统的开发目的是根据用户的偏好来推荐电影,推荐系统的首选工具Surprise库。
from surprise import SVD
from surprise.model_selection import train_test_split ,
cross_validate
trainset , testset = train_test_split (data , test_size =0.25)
algo = SVD ()
algo . fit( trainset )
predictions = algo . test ( testset )
cross_validate (algo , data , measures =[ ’RMSE ’, ’MAE ’], cv =3,
verbose = True )
  1. 进行预测: 现在,使用SVD算法进行预测,该算法是进行矩阵因式分解的强大工具,用于预测用户对电影的评分。
user_id = ’ A1CV1WROP5KTTW ’
movie = ’Movie6 ’
rating = 5
algo . predict ( user_id , movie , r_ui = rating )

结果如下所示:

图片

7、结论(模型应用)

这个脚本不仅揭示了亚马逊电影评分数据的复杂性,还提供了一个多功能的分析工具包。这里的方法也可以适用于各种数据场景。例如,在教育领域,类似的推荐系统可以推荐个性化的学习材料、课程甚至课外活动,从而提高学生的参与度和学习效果。

8、教育示例

利用Surprise库,根据学生的偏好推荐教育资源。

  1. 数据集:
import pandas as pd
# 假设'education_data.csv'包含列'student_id'、'resource_id'和'rating'
education_data = pd. read_csv (" path_to / education_data . csv")
print ( education_data . head ()
  1. 分析资源受欢迎程度:

找出最受欢迎或评分最高的教育资源。

resource_popularity = education_filtered . groupby
’resource_id ’). sum ()
most_popular_resource =
resource_popularity [’rating ’]. idxmax ()
print (" Most_popular_resource :
{ most_popular_resource }")
  1. 建立教育推荐模型:

利用Surprise库,根据用户偏好推荐教育资源。

resource_popularity =
education_filtered . groupby (’ resource_id ’). sum ()
most_popular_resource =
resource_popularity [’rating ’]. idxmax ()
print (" Most _popular _resource :{ most_popular_resource }")
  1. 推荐教育资源:

针对特定学生和教育资源预测评分,展示该模型在教育环境中的适用性。

Student_id = ’student123 ’
resource = ’course456 ’
predicted_rating = algo . predict ( Student_id , resource ). est
print (" Predicted_rating_for_resource
{ resource }_by_user_{ user_id }:{ predicted_rating }")

可以在Github上查看源代码和数据集。

【Github】: https://github.com/chukolate007/amazon-user-based-recommendation-system

技术交流&材料获取

技术要学会分享、交流,不建议闭门造车。一个人可以走的很快、一堆人可以走的更远。

资料干货、资料分享、数据、技术交流提升,均可加交流群获取,群友已超过2000人,添加时最好的备注方式为:来源+兴趣方向,方便找到志同道合的朋友。

方式①、添加微信号:dkl88194,备注:来自CSDN + 资料
方式②、微信搜索公众号:Python学习与数据挖掘,后台回复: 资料

1、数据分析实战宝典
在这里插入图片描述

2、100个超强算法模型

我们打造了《100个超强算法模型》,特点:从0到1轻松学习,原理、代码、案例应有尽有,所有的算法模型都是按照这样的节奏进行表述,所以是一套完完整整的案例库。

很多初学者是有这么一个痛点,就是案例,案例的完整性直接影响同学的兴致。因此,我整理了 100个最常见的算法模型,在你的学习路上助推一把!
在这里插入图片描述

这篇关于基于 Python 和Surprise库,新手轻松搭建推荐系统的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/535832

相关文章

Python爬虫selenium验证之中文识别点选+图片验证码案例(最新推荐)

《Python爬虫selenium验证之中文识别点选+图片验证码案例(最新推荐)》本文介绍了如何使用Python和Selenium结合ddddocr库实现图片验证码的识别和点击功能,感兴趣的朋友一起看... 目录1.获取图片2.目标识别3.背景坐标识别3.1 ddddocr3.2 打码平台4.坐标点击5.图

Python自动化Office文档处理全攻略

《Python自动化Office文档处理全攻略》在日常办公中,处理Word、Excel和PDF等Office文档是再常见不过的任务,手动操作这些文档不仅耗时耗力,还容易出错,幸运的是,Python提供... 目录一、自动化处理Word文档1. 安装python-docx库2. 读取Word文档内容3. 修改

Java中实现订单超时自动取消功能(最新推荐)

《Java中实现订单超时自动取消功能(最新推荐)》本文介绍了Java中实现订单超时自动取消功能的几种方法,包括定时任务、JDK延迟队列、Redis过期监听、Redisson分布式延迟队列、Rocket... 目录1、定时任务2、JDK延迟队列 DelayQueue(1)定义实现Delayed接口的实体类 (

Python重命名文件并移动到对应文件夹

《Python重命名文件并移动到对应文件夹》在日常的文件管理和处理过程中,我们可能会遇到需要将文件整理到不同文件夹中的需求,下面我们就来看看如何使用Python实现重命名文件并移动到对应文件夹吧... 目录检查并删除空文件夹1. 基本需求2. 实现代码解析3. 代码解释4. 代码执行结果5. 总结方法补充在

Python自动化办公之合并多个Excel

《Python自动化办公之合并多个Excel》在日常的办公自动化工作中,尤其是处理大量数据时,合并多个Excel表格是一个常见且繁琐的任务,下面小编就来为大家介绍一下如何使用Python轻松实现合... 目录为什么选择 python 自动化目标使用 Python 合并多个 Excel 文件安装所需库示例代码

Python使用Pandas对比两列数据取最大值的五种方法

《Python使用Pandas对比两列数据取最大值的五种方法》本文主要介绍使用Pandas对比两列数据取最大值的五种方法,包括使用max方法、apply方法结合lambda函数、函数、clip方法、w... 目录引言一、使用max方法二、使用apply方法结合lambda函数三、使用np.maximum函数

shell脚本自动删除30天以前的文件(最新推荐)

《shell脚本自动删除30天以前的文件(最新推荐)》该文章介绍了如何使用Shell脚本自动删除指定目录下30天以前的文件,并通过crontab设置定时任务,此外,还提供了如何使用Shell脚本删除E... 目录shell脚本自动删除30天以前的文件linux按照日期定时删除elasticsearch索引s

Python调用Orator ORM进行数据库操作

《Python调用OratorORM进行数据库操作》OratorORM是一个功能丰富且灵活的PythonORM库,旨在简化数据库操作,它支持多种数据库并提供了简洁且直观的API,下面我们就... 目录Orator ORM 主要特点安装使用示例总结Orator ORM 是一个功能丰富且灵活的 python O

Python使用国内镜像加速pip安装的方法讲解

《Python使用国内镜像加速pip安装的方法讲解》在Python开发中,pip是一个非常重要的工具,用于安装和管理Python的第三方库,然而,在国内使用pip安装依赖时,往往会因为网络问题而导致速... 目录一、pip 工具简介1. 什么是 pip?2. 什么是 -i 参数?二、国内镜像源的选择三、如何

python使用fastapi实现多语言国际化的操作指南

《python使用fastapi实现多语言国际化的操作指南》本文介绍了使用Python和FastAPI实现多语言国际化的操作指南,包括多语言架构技术栈、翻译管理、前端本地化、语言切换机制以及常见陷阱和... 目录多语言国际化实现指南项目多语言架构技术栈目录结构翻译工作流1. 翻译数据存储2. 翻译生成脚本