详解Keras3.0 API: Optimizers

2023-12-24 18:52
文章标签 详解 api optimizers keras3.0

本文主要是介绍详解Keras3.0 API: Optimizers,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Optimizers

优化器(Optimizer)是深度学习中用于更新模型参数的一种方法,它的目标是最小化损失函数。在训练神经网络时,我们通常使用梯度下降法来更新参数,而优化器就是实现这一过程的工具。优化器的主要作用是在每次迭代过程中计算损失函数关于模型参数的梯度,并根据梯度的方向和大小来更新参数,从而使得模型逐渐逼近最优解。

常用的优化器
  • SGD:随机梯度下降这是一种基本的优化算法,通过迭代更新模型参数来最小化损失函数。
  • RMSprop:这是一种自适应学习率的优化算法,通过调整学习率来加速收敛过程。
  • Adam:这是一种结合了RMSprop和Momentum的优化算法,具有较好的性能和稳定性。
  • AdamW:这是一种针对权重衰减的Adam优化算法,可以有效防止过拟合。
  • Adadelta:这是一种自适应学习率的优化算法,适用于解决稀疏梯度问题。
  • Adagrad:这是一种自适应学习率的优化算法,通过调整学习率来加速收敛过程。
  • Adamax:这是一种结合了RMSprop和Adagrad的优化算法,具有较好的性能和稳定性。
  • Adafactor:这是一种基于二阶矩估计的自适应学习率优化算法,适用于解决大规模数据集上的训练问题。
  • Nadam:这是一种结合了Adam和Nesterov动量的优化算法,具有较好的性能和稳定性。
  • Ftrl:这是一种针对稀疏梯度问题的优化算法,通过调整学习率和权重衰减来加速收敛过程。
示例 

以SGD为例

import tensorflow as tf 
from tensorflow.keras import layers, models, optimizers#使用Keras的内置函数加载MNIST数据集
mnist = tf.keras.datasets.mnist#将数据集分为训练集和测试集
(train_images, train_labels), (test_images, test_labels) = mnist.load_data()#将训练图像调整为一维数组,每个元素表示一个像素值
train_images = train_images.reshape((60000, 28 * 28)) #将像素值归一化到0-1之间
train_images = train_images.astype('float32') / 255#将测试图像调整为一维数组,每个元素表示一个像素值
test_images = test_images.reshape((10000, 28 * 28))#将像素值归一化到0-1之间
test_images = test_images.astype('float32') / 255#创建一个随机梯度下降优化器SGD优化器实例,学习率为0.01、动量为0.9
sgd_optimizer = optimizers.SGD(learning_rate=0.01, momentum=0.9)# 创建模型
model = models.Sequential()#添加一个全连接层,神经元数量为64,激活函数为ReLU,输入形状为(28*28,)
model.add(layers.Dense(64, activation='relu', input_shape=(28 * 28,)))#添加一个全连接层,神经元数量为10,激活函数为Softmax
model.add(layers.Dense(10, activation='softmax'))# 编译模型,使用SGD优化器,损失函数为稀疏分类交叉熵,评估指标为准确率
model.compile(optimizer=sgd_optimizer, loss='sparse_categorical_crossentropy', metrics=['accuracy'])# 训练模型,迭代次数为5,批量大小为64
model.fit(train_images, train_labels, epochs=5, batch_size=64)#评估模型在测试集上的损失和准确率
test_loss, test_acc = model.evaluate(test_images, test_labels)#打印测试集上的准确率
print('Test accuracy:', test_acc)

在使用SGD优化器时,可以设置不同的学习率和动量参数。学习率决定了权重更新的速度,而动量参数则有助于加速梯度下降过程。在实际应用中,可以根据问题的复杂性和数据的特点来选择合适的优化器和参数。(其他优化器的使用及解释请详细查询相关文档)

这篇关于详解Keras3.0 API: Optimizers的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/532780

相关文章

Java中注解与元数据示例详解

《Java中注解与元数据示例详解》Java注解和元数据是编程中重要的概念,用于描述程序元素的属性和用途,:本文主要介绍Java中注解与元数据的相关资料,文中通过代码介绍的非常详细,需要的朋友可以参... 目录一、引言二、元数据的概念2.1 定义2.2 作用三、Java 注解的基础3.1 注解的定义3.2 内

JavaScript中的isTrusted属性及其应用场景详解

《JavaScript中的isTrusted属性及其应用场景详解》在现代Web开发中,JavaScript是构建交互式应用的核心语言,随着前端技术的不断发展,开发者需要处理越来越多的复杂场景,例如事件... 目录引言一、问题背景二、isTrusted 属性的来源与作用1. isTrusted 的定义2. 为

使用Python实现操作mongodb详解

《使用Python实现操作mongodb详解》这篇文章主要为大家详细介绍了使用Python实现操作mongodb的相关知识,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、示例二、常用指令三、遇到的问题一、示例from pymongo import MongoClientf

一文详解Python中数据清洗与处理的常用方法

《一文详解Python中数据清洗与处理的常用方法》在数据处理与分析过程中,缺失值、重复值、异常值等问题是常见的挑战,本文总结了多种数据清洗与处理方法,文中的示例代码简洁易懂,有需要的小伙伴可以参考下... 目录缺失值处理重复值处理异常值处理数据类型转换文本清洗数据分组统计数据分箱数据标准化在数据处理与分析过

详解如何在React中执行条件渲染

《详解如何在React中执行条件渲染》在现代Web开发中,React作为一种流行的JavaScript库,为开发者提供了一种高效构建用户界面的方式,条件渲染是React中的一个关键概念,本文将深入探讨... 目录引言什么是条件渲染?基础示例使用逻辑与运算符(&&)使用条件语句列表中的条件渲染总结引言在现代

详解Vue如何使用xlsx库导出Excel文件

《详解Vue如何使用xlsx库导出Excel文件》第三方库xlsx提供了强大的功能来处理Excel文件,它可以简化导出Excel文件这个过程,本文将为大家详细介绍一下它的具体使用,需要的小伙伴可以了解... 目录1. 安装依赖2. 创建vue组件3. 解释代码在Vue.js项目中导出Excel文件,使用第三

SQL注入漏洞扫描之sqlmap详解

《SQL注入漏洞扫描之sqlmap详解》SQLMap是一款自动执行SQL注入的审计工具,支持多种SQL注入技术,包括布尔型盲注、时间型盲注、报错型注入、联合查询注入和堆叠查询注入... 目录what支持类型how---less-1为例1.检测网站是否存在sql注入漏洞的注入点2.列举可用数据库3.列举数据库

Linux之软件包管理器yum详解

《Linux之软件包管理器yum详解》文章介绍了现代类Unix操作系统中软件包管理和包存储库的工作原理,以及如何使用包管理器如yum来安装、更新和卸载软件,文章还介绍了如何配置yum源,更新系统软件包... 目录软件包yumyum语法yum常用命令yum源配置文件介绍更新yum源查看已经安装软件的方法总结软

java图像识别工具类(ImageRecognitionUtils)使用实例详解

《java图像识别工具类(ImageRecognitionUtils)使用实例详解》:本文主要介绍如何在Java中使用OpenCV进行图像识别,包括图像加载、预处理、分类、人脸检测和特征提取等步骤... 目录前言1. 图像识别的背景与作用2. 设计目标3. 项目依赖4. 设计与实现 ImageRecogni

Java访问修饰符public、private、protected及默认访问权限详解

《Java访问修饰符public、private、protected及默认访问权限详解》:本文主要介绍Java访问修饰符public、private、protected及默认访问权限的相关资料,每... 目录前言1. public 访问修饰符特点:示例:适用场景:2. private 访问修饰符特点:示例: