Linux NVMe Driver学习笔记之7:Identify初始化及命令提交过程

本文主要是介绍Linux NVMe Driver学习笔记之7:Identify初始化及命令提交过程,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

这篇文章紧接上回分解,在nvme_probe函数的最后一步调用nvme_reset_work进行reset操作,nvme_reset_work的主要工作可以概括如下几个步骤:

  1. 进入nvme_reset_work函数后先检查NVME_CTRL_RESETTING标志,来确保nvme_reset_work不会被重复进入。

  2. 调用nvme_pci_enable

  3. 调用nvme_configure_admin_queue

  4. 调用nvme_init_queue

  5. 调用nvme_alloc_admin_tags

  6. 调用nvme_init_identify

  7. 调用nvme_setup_io_queues

  8. 调用nvme_start_queues/nvme_dev_add之后,接着调用nvme_queue_scan

上篇文章中,我们解析了nvme_init_queue和nvme_alloc_admin_tags的内容,本文我们接着介绍nvme_reset_work中的其他函数。

我们来看看nvme_init_identify的内容:

int nvme_init_identify(struct nvme_ctrl *ctrl)

{

struct nvme_id_ctrl *id;

u64 cap;

int ret, page_shift;

u32 max_hw_sectors;

       // 读取NVMe协议的版本号

ret = ctrl->ops->reg_read32(ctrl, NVME_REG_VS, &ctrl->vs);

if (ret) {

dev_err(ctrl->device, "Reading VS failed (%d)\n", ret);

return ret;

}

      // 读取NVMe controller寄存器CAP值

ret = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &cap);

if (ret) {

dev_err(ctrl->device, "Reading CAP failed (%d)\n", ret);

return ret;

}

page_shift = NVME_CAP_MPSMIN(cap) + 12;

      // NVMe 1.1之后,支持subsystem Reset

if (ctrl->vs >= NVME_VS(1, 1, 0))

ctrl->subsystem = NVME_CAP_NSSRC(cap);

ret = nvme_identify_ctrl(ctrl, &id); //读取identify data

if (ret) {

dev_err(ctrl->device, "Identify Controller failed (%d)\n", ret);

return -EIO;

}

ctrl->vid = le16_to_cpu(id->vid);

ctrl->oncs = le16_to_cpup(&id->oncs);

atomic_set(&ctrl->abort_limit, id->acl + 1);

ctrl->vwc = id->vwc;

ctrl->cntlid = le16_to_cpup(&id->cntlid);

memcpy(ctrl->serial, id->sn, sizeof(id->sn));

memcpy(ctrl->model, id->mn, sizeof(id->mn));

memcpy(ctrl->firmware_rev, id->fr, sizeof(id->fr));

if (id->mdts)

max_hw_sectors = 1 << (id->mdts + page_shift - 9);

else

max_hw_sectors = UINT_MAX;

ctrl->max_hw_sectors =

min_not_zero(ctrl->max_hw_sectors, max_hw_sectors);

nvme_set_queue_limits(ctrl, ctrl->admin_q);

ctrl->sgls = le32_to_cpu(id->sgls);

ctrl->kas = le16_to_cpu(id->kas);

if (ctrl->ops->is_fabrics) {

.... // NVMe over fabrics内容省略

}

} else {

ctrl->cntlid = le16_to_cpu(id->cntlid);

}

kfree(id);

return ret;

}

从上面的code来看,主要做了两部分的工作:

  1. 调用nvme_identify_ctrl读取identify data.

  2. 调用nvme_set_queue_limits设置queue write cache的大小.

先看一下nvme_identify_ctrl的代码:

int nvme_identify_ctrl(struct nvme_ctrl *dev, struct nvme_id_ctrl **id)

{

struct nvme_command c = { };

int error;

/* gcc-4.4.4 (at least) has issues with initializers and anon unions */

c.identify.opcode = nvme_admin_identify;

c.identify.cns = cpu_to_le32(NVME_ID_CNS_CTRL);

*id = kmalloc(sizeof(struct nvme_id_ctrl), GFP_KERNEL);

if (!*id)

return -ENOMEM;

error = nvme_submit_sync_cmd(dev->admin_q, &c, *id,

sizeof(struct nvme_id_ctrl));

if (error)

kfree(*id);

return error;

}

首先,nvme_identify_ctrl函数先建立identify Command(opcode=0x6), 

Identify Command下发后返回的是4KB的Identify Data Structure, 这个data structure可以描述controller,也可以描述namespace, 具体是描述什么要取决于CNS(Controller or Namespace Structure) byte. 

  • CNS=0x00h,代表描述的是Namespace data structure;

  • CNS=0x01h,代表描述的是Controller data structure;

  • CNS=0x02h,代表描述的是Namespace list;

上面代码中,我们可以看到在赋值c.identify.cns时,采用了cpu_to_le32这样的函数,因为在nvme协议里规定的一些消息格式都是按照小端存储的,但是我们的主机可能是小端的x86,也可能是大端的arm或者其他类型,用了这样的函数就可以做到主机格式和小端之间的转换,让代码更好得跨平台,这也是Linux系统强大的地方。

c.identify.cns = cpu_to_le32(NVME_ID_CNS_CTRL);

nvme_identify_ctrl函数已经建立了Identify Command,驱动是怎么提交这个admin command呢?实际上,admin command的提交过程主要调用了nvme_submit_sync_cmd函数,但最终调用的函数是__nvme_submit_sync_cmd:

int __nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,

union nvme_result *result, void *buffer, unsigned bufflen,

unsigned timeout, int qid, int at_head, int flags)

{

struct request *req;

int ret;

req = nvme_alloc_request(q, cmd, flags, qid);

if (IS_ERR(req))

return PTR_ERR(req);

req->timeout = timeout ? timeout : ADMIN_TIMEOUT;

if (buffer && bufflen) {

ret = blk_rq_map_kern(q, req, buffer, bufflen, GFP_KERNEL);

if (ret)

goto out;

}

blk_execute_rq(req->q, NULL, req, at_head);

if (result)

*result = nvme_req(req)->result;

ret = req->errors;

 out:

blk_mq_free_request(req);

return ret;

}

从上面的代码,可以看到nvme_submit_sync_cmd函数的执行过程主要有三步:

  1. 调用nvme_alloc_request函数,进一步调用blk_mq_alloc_request_hctx申请一个request_queue, 并完成相应的初始化;

  2. 如果buffer & bufflen不为0,则说明这次nvme admin命令需要传输数据,既然需要传输数据,就需要得到bio的支持, 那么就调用blk_rq_map_kern完成request queue与bio以及bio与内核空间buffer的关联。毕竟block layer并不认识内核空间或者用户空间,而只认识bio。

  3. 第三步是最后一步,也是最关键的一步。调用blk_excute_rq实现最终的命令发送。

我们先看看nvme_alloc_request的代码:

struct request *nvme_alloc_request(struct request_queue *q,

struct nvme_command *cmd, unsigned int flags, int qid)

{

struct request *req;

if (qid == NVME_QID_ANY) {

req = blk_mq_alloc_request(q, nvme_is_write(cmd), flags);

} else {

req = blk_mq_alloc_request_hctx(q, nvme_is_write(cmd), flags,

qid ? qid - 1 : 0);

}

if (IS_ERR(req))

return req;

req->cmd_type = REQ_TYPE_DRV_PRIV;

req->cmd_flags |= REQ_FAILFAST_DRIVER;

nvme_req(req)->cmd = cmd;

return req;

}

如上述代码显示,blk_mq_alloc_request_hctx申请一个request_queue并初始化之后,cmd参数,在这里也就是Identify command会传递给nvme_req。

我们再看看最关键的blk_excute_rq的代码:

int blk_execute_rq(struct request_queue *q, struct gendisk *bd_disk,

   struct request *rq, int at_head)

{

DECLARE_COMPLETION_ONSTACK(wait);

char sense[SCSI_SENSE_BUFFERSIZE];

int err = 0;

unsigned long hang_check;

if (!rq->sense) {

memset(sense, 0, sizeof(sense));

rq->sense = sense;

rq->sense_len = 0;

}

rq->end_io_data = &wait;

blk_execute_rq_nowait(q, bd_disk, rq, at_head, blk_end_sync_rq);

/* Prevent hang_check timer from firing at us during very long I/O */

hang_check = sysctl_hung_task_timeout_secs;

if (hang_check)

while (!wait_for_completion_io_timeout(&wait, hang_check * (HZ/2)));

else

wait_for_completion_io(&wait);

if (rq->errors)

err = -EIO;

if (rq->sense == sense) {

rq->sense = NULL;

rq->sense_len = 0;

}

return err;

}

调用blk_execute_rq_nowait函数将request插入执行队列,调用wait_for_completion_io等待命令的完成。

 

这篇关于Linux NVMe Driver学习笔记之7:Identify初始化及命令提交过程的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/530352

相关文章

Linux中shell解析脚本的通配符、元字符、转义符说明

《Linux中shell解析脚本的通配符、元字符、转义符说明》:本文主要介绍shell通配符、元字符、转义符以及shell解析脚本的过程,通配符用于路径扩展,元字符用于多命令分割,转义符用于将特殊... 目录一、linux shell通配符(wildcard)二、shell元字符(特殊字符 Meta)三、s

Linux之软件包管理器yum详解

《Linux之软件包管理器yum详解》文章介绍了现代类Unix操作系统中软件包管理和包存储库的工作原理,以及如何使用包管理器如yum来安装、更新和卸载软件,文章还介绍了如何配置yum源,更新系统软件包... 目录软件包yumyum语法yum常用命令yum源配置文件介绍更新yum源查看已经安装软件的方法总结软

linux报错INFO:task xxxxxx:634 blocked for more than 120 seconds.三种解决方式

《linux报错INFO:taskxxxxxx:634blockedformorethan120seconds.三种解决方式》文章描述了一个Linux最小系统运行时出现的“hung_ta... 目录1.问题描述2.解决办法2.1 缩小文件系统缓存大小2.2 修改系统IO调度策略2.3 取消120秒时间限制3

Linux alias的三种使用场景方式

《Linuxalias的三种使用场景方式》文章介绍了Linux中`alias`命令的三种使用场景:临时别名、用户级别别名和系统级别别名,临时别名仅在当前终端有效,用户级别别名在当前用户下所有终端有效... 目录linux alias三种使用场景一次性适用于当前用户全局生效,所有用户都可调用删除总结Linux

Linux:alias如何设置永久生效

《Linux:alias如何设置永久生效》在Linux中设置别名永久生效的步骤包括:在/root/.bashrc文件中配置别名,保存并退出,然后使用source命令(或点命令)使配置立即生效,这样,别... 目录linux:alias设置永久生效步骤保存退出后功能总结Linux:alias设置永久生效步骤

Linux使用fdisk进行磁盘的相关操作

《Linux使用fdisk进行磁盘的相关操作》fdisk命令是Linux中用于管理磁盘分区的强大文本实用程序,这篇文章主要为大家详细介绍了如何使用fdisk进行磁盘的相关操作,需要的可以了解下... 目录简介基本语法示例用法列出所有分区查看指定磁盘的区分管理指定的磁盘进入交互式模式创建一个新的分区删除一个存

Linux使用dd命令来复制和转换数据的操作方法

《Linux使用dd命令来复制和转换数据的操作方法》Linux中的dd命令是一个功能强大的数据复制和转换实用程序,它以较低级别运行,通常用于创建可启动的USB驱动器、克隆磁盘和生成随机数据等任务,本文... 目录简介功能和能力语法常用选项示例用法基础用法创建可启动www.chinasem.cn的 USB 驱动

关于Maven生命周期相关命令演示

《关于Maven生命周期相关命令演示》Maven的生命周期分为Clean、Default和Site三个主要阶段,每个阶段包含多个关键步骤,如清理、编译、测试、打包等,通过执行相应的Maven命令,可以... 目录1. Maven 生命周期概述1.1 Clean Lifecycle1.2 Default Li

SpringBoot 整合 Grizzly的过程

《SpringBoot整合Grizzly的过程》Grizzly是一个高性能的、异步的、非阻塞的HTTP服务器框架,它可以与SpringBoot一起提供比传统的Tomcat或Jet... 目录为什么选择 Grizzly?Spring Boot + Grizzly 整合的优势添加依赖自定义 Grizzly 作为

高效管理你的Linux系统: Debian操作系统常用命令指南

《高效管理你的Linux系统:Debian操作系统常用命令指南》在Debian操作系统中,了解和掌握常用命令对于提高工作效率和系统管理至关重要,本文将详细介绍Debian的常用命令,帮助读者更好地使... Debian是一个流行的linux发行版,它以其稳定性、强大的软件包管理和丰富的社区资源而闻名。在使用