c++11特性:独占的智能指针

2023-12-23 12:20
文章标签 c++ 指针 特性 智能 独占

本文主要是介绍c++11特性:独占的智能指针,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在C++中没有垃圾回收机制,必须自己释放分配的内存,否则就会造成内存泄露。解决这个问题最有效的方法是使用智能指针(smart pointer)。智能指针是存储指向动态分配(堆)对象指针的类,用于生存期的控制,能够确保在离开指针所在作用域时,自动地销毁动态分配的对象,防止内存泄露。智能指针的核心实现技术是引用计数,每使用它一次,内部引用计数加1,每析构一次内部的引用计数减1,减为0时,删除所指向的堆内存。

C++11中提供了三种智能指针,使用这些智能指针时需要引用头文件<memory>

  • std::shared_ptr:共享的智能指针
  • std::unique_ptr:独占的智能指针
  • std::weak_ptr:弱引用的智能指针,它不共享指针,不能操作资源,是用来监视shared_ptr的。

独占的智能指针的使用方法和共享的智能指针相似。 

1. 初始化 

std::unique_ptr是一个独占型的智能指针,它不允许其他的智能指针共享其内部的指针,可以通过它的构造函数初始化一个独占智能指针对象,但是不允许通过赋值将一个unique_ptr赋值给另一个unique_ptr。

// 通过构造函数初始化对象
unique_ptr<int> ptr1(new int(10));
// error, 不允许将一个unique_ptr赋值给另一个unique_ptr
unique_ptr<int> ptr2 = ptr1;

std::unique_ptr不允许复制,但是可以通过函数返回给其他的std::unique_ptr,还可以通过std::move来转译给其他的std::unique_ptr,这样原始指针的所有权就被转移了,这个原始指针还是被独占的。

#include <iostream>
#include <memory>
using namespace std;unique_ptr<int> func()
{return unique_ptr<int>(new int(520));
}int main()
{// 通过构造函数初始化unique_ptr<int> ptr1(new int(10));// 通过转移所有权的方式初始化unique_ptr<int> ptr2 = move(ptr1);// 即将被析构的临时对象unique_ptr<int> ptr3 = func();return 0;
}

unique_ptr独占智能指针类也有一个reset方法,函数原型如下:

void reset( pointer ptr = pointer() ) noexcept;

使用reset方法可以让unique_ptr解除对原始内存的管理,也可以用来初始化一个独占的智能指针。

int main()
{unique_ptr<int> ptr1(new int(10));unique_ptr<int> ptr2 = move(ptr1);ptr1.reset();ptr2.reset(new int(250));return 0;
}
  • ptr1.reset();解除对原始内存的管理
  • ptr2.reset(new int(250));重新指定智能指针管理的原始内存

 如果想要获取独占智能指针管理的原始地址,可以调用get()方法,函数原型如下:

pointer get() const noexcept;
int main()
{unique_ptr<int> ptr1(new int(10));unique_ptr<int> ptr2 = move(ptr1);ptr2.reset(new int(250));cout << *ptr2.get() << endl;	// 得到内存地址中存储的实际数值 250return 0;
}

接下来来用一段代码来简单演示上面用法的使用:

#include<iostream>
#include<memory>
using namespace std;class Test
{
public:Test(){cout << "construct Test..." << endl;}Test(int x) : m_num(x){cout << "construct Test,x = " << x << endl;}Test(string str){cout << "construct Test,str = " << str << endl;}~Test(){cout << "destruct Test..." << endl;}void setValue(int v){m_num = v;}void print(){cout << "m_num:" << m_num << endl;}private:int m_num;
};int main()
{ios::sync_with_stdio(0), cin.tie(0), cout.tie(0);// 通过构造函数初始化unique_ptr<int> ptr1(new int(9));//unique_ptr<int> ptr2 = ptr1;// error,指针是独占的,不能共享// // 通过移动构造函数初始化unique_ptr<int> ptr2 = move(ptr1);// 将ptr1的资源转移到ptr2是可以的// 通过reset初始化ptr2.reset(new int(8));//管理另一块内存// 获取原始指针unique_ptr<Test> ptr3(new Test(1));Test* pt = ptr3.get();pt->setValue(2);pt->print();ptr3->setValue(4);ptr3->print();return 0;
}

输出结果为:

construct Test,x = 1
m_num:2
m_num:4
destruct Test...

2. 删除器 

 unique_ptr指定删除器和shared_ptr指定删除器是有区别的,unique_ptr指定删除器的时候需要确定删除器的类型,所以不能像shared_ptr那样直接指定删除器,举例说明:

shared_ptr<int> ptr1(new int(10), [](int*p) {delete p; });	// ok
unique_ptr<int> ptr1(new int(10), [](int*p) {delete p; });	// errorint main()
{using func_ptr = void(*)(int*);unique_ptr<int, func_ptr> ptr1(new int(10), [](int*p) {delete p; });return 0;
}

在上面的代码中第7行,func_ptr的类型和lambda表达式的类型是一致的。在lambda表达式没有捕获任何变量的情况下是正确的,如果捕获了变量,编译时则会报错:

int main()
{using func_ptr = void(*)(int*);unique_ptr<int, func_ptr> ptr1(new int(10), [&](int*p) {delete p; });	// errorreturn 0;
}

 上面的代码中错误原因是这样的,在lambda表达式没有捕获任何外部变量时,可以直接转换为函数指针,一旦捕获了就无法转换了(是一个仿函数),如果想要让编译器成功通过编译,那么需要使用可调用对象包装器来处理声明的函数指针:

int main()
{using func_ptr = void(*)(int*);unique_ptr<int, function<void(int*)>> ptr1(new int(10), [&](int*p) {delete p; });return 0;
}

 接下来用一段代码来演示删除器的用法:

#include<iostream>
#include<memory>
using namespace std;class Test
{
public:Test(){cout << "construct Test..." << endl;}Test(int x) : m_num(x){cout << "construct Test,x = " << x << endl;}Test(string str){cout << "construct Test,str = " << str << endl;}~Test(){cout << "destruct Test..." << endl;}void setValue(int v){m_num = v;}void print(){cout << "m_num:" << m_num << endl;}private:int m_num;
};int main()
{ios::sync_with_stdio(0), cin.tie(0), cout.tie(0);// 通过构造函数初始化unique_ptr<int> ptr1(new int(9));//unique_ptr<int> ptr2 = ptr1;// error,指针是独占的,不能共享// // 通过移动构造函数初始化unique_ptr<int> ptr2 = move(ptr1);// 将ptr1的资源转移到ptr2是可以的// 通过reset初始化ptr2.reset(new int(8));//管理另一块内存// 获取原始指针unique_ptr<Test> ptr3(new Test(1));Test* pt = ptr3.get();pt->setValue(2);pt->print();ptr3->setValue(4);ptr3->print();using ptrFunc = void(*)(Test*);unique_ptr<Test, ptrFunc> ptr4(new Test("luffy"), [](Test* t) {cout << "----------------" << endl;delete t;});return 0;
}

输出结果为:

construct Test,x = 1
m_num:2
m_num:4
construct Test,str = luffy
----------------
destruct Test...
destruct Test...

由输出结果可以得知,ptr4管理的这块内存就被析构了。

若lambda表达式捕获外部变量,就需要将ptr4那块语句改为:

unique_ptr<Test, function<void(Test *)>> ptr5(new Test("luffy"), [=](Test* t) {cout << "----------------" << endl;delete t;});

 仿函数的类型只能通过可调用对象包装器对他的类型进行包装。

 特别需要注意的是:独占智能指针能自动释放内存。

 

#include<iostream>
#include<memory>
#include<functional>
using namespace std;class Test
{
public:Test(){cout << "construct Test..." << endl;}Test(int x) : m_num(x){cout << "construct Test,x = " << x << endl;}Test(string str){cout << "construct Test,str = " << str << endl;}~Test(){cout << "destruct Test..." << endl;}void setValue(int v){m_num = v;}void print(){cout << "m_num:" << m_num << endl;}private:int m_num;
};int main()
{ios::sync_with_stdio(0), cin.tie(0), cout.tie(0);// 通过构造函数初始化unique_ptr<int> ptr1(new int(9));//unique_ptr<int> ptr2 = ptr1;// error,指针是独占的,不能共享// // 通过移动构造函数初始化unique_ptr<int> ptr2 = move(ptr1);// 将ptr1的资源转移到ptr2是可以的// 通过reset初始化ptr2.reset(new int(8));//管理另一块内存// 获取原始指针unique_ptr<Test> ptr3(new Test(1));Test* pt = ptr3.get();pt->setValue(2);pt->print();ptr3->setValue(4);ptr3->print();using ptrFunc = void(*)(Test*);unique_ptr<Test, ptrFunc> ptr4(new Test("luffy"), [](Test* t) {cout << "----------------" << endl;delete t;});// 独占的智能指针可以管理数组类型的地址,能够自动释放// 在unique_ptr指定T [],删除器就知道删除的是一个数组类型的内存unique_ptr<Test[]> ptr5(new Test[3]{1, 2, 3});return 0;
}

输出结果为:

construct Test,x = 1
m_num:2
m_num:4
construct Test,str = luffy
construct Test,x = 1
construct Test,x = 2
construct Test,x = 3
destruct Test...
destruct Test...
destruct Test...
----------------
destruct Test...
destruct Test...

由输出结果可以看出,数组成功被析构了,先创建的后析构(在栈上)。 

在c++11后共享指针也可以自动释放数组内存了:

// 在c++11中shared_ptr6不支持下面的写法,c++11以后才支持的
shared_ptr<Test[]> ptr6(new Test[3]{ 1, 2, 3 });

本文参考:独占的智能指针 | 爱编程的大丙 (subingwen.cn) 

这篇关于c++11特性:独占的智能指针的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/528026

相关文章

从入门到精通C++11 <chrono> 库特性

《从入门到精通C++11<chrono>库特性》chrono库是C++11中一个非常强大和实用的库,它为时间处理提供了丰富的功能和类型安全的接口,通过本文的介绍,我们了解了chrono库的基本概念... 目录一、引言1.1 为什么需要<chrono>库1.2<chrono>库的基本概念二、时间段(Durat

C++20管道运算符的实现示例

《C++20管道运算符的实现示例》本文简要介绍C++20管道运算符的使用与实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录标准库的管道运算符使用自己实现类似的管道运算符我们不打算介绍太多,因为它实际属于c++20最为重要的

Visual Studio 2022 编译C++20代码的图文步骤

《VisualStudio2022编译C++20代码的图文步骤》在VisualStudio中启用C++20import功能,需设置语言标准为ISOC++20,开启扫描源查找模块依赖及实验性标... 默认创建Visual Studio桌面控制台项目代码包含C++20的import方法。右键项目的属性:

c++中的set容器介绍及操作大全

《c++中的set容器介绍及操作大全》:本文主要介绍c++中的set容器介绍及操作大全,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录​​一、核心特性​​️ ​​二、基本操作​​​​1. 初始化与赋值​​​​2. 增删查操作​​​​3. 遍历方

解析C++11 static_assert及与Boost库的关联从入门到精通

《解析C++11static_assert及与Boost库的关联从入门到精通》static_assert是C++中强大的编译时验证工具,它能够在编译阶段拦截不符合预期的类型或值,增强代码的健壮性,通... 目录一、背景知识:传统断言方法的局限性1.1 assert宏1.2 #error指令1.3 第三方解决

C++11委托构造函数和继承构造函数的实现

《C++11委托构造函数和继承构造函数的实现》C++引入了委托构造函数和继承构造函数这两个重要的特性,本文主要介绍了C++11委托构造函数和继承构造函数的实现,具有一定的参考价值,感兴趣的可以了解一下... 目录引言一、委托构造函数1.1 委托构造函数的定义与作用1.2 委托构造函数的语法1.3 委托构造函

C++11作用域枚举(Scoped Enums)的实现示例

《C++11作用域枚举(ScopedEnums)的实现示例》枚举类型是一种非常实用的工具,C++11标准引入了作用域枚举,也称为强类型枚举,本文主要介绍了C++11作用域枚举(ScopedEnums... 目录一、引言二、传统枚举类型的局限性2.1 命名空间污染2.2 整型提升问题2.3 类型转换问题三、C

C++链表的虚拟头节点实现细节及注意事项

《C++链表的虚拟头节点实现细节及注意事项》虚拟头节点是链表操作中极为实用的设计技巧,它通过在链表真实头部前添加一个特殊节点,有效简化边界条件处理,:本文主要介绍C++链表的虚拟头节点实现细节及注... 目录C++链表虚拟头节点(Dummy Head)一、虚拟头节点的本质与核心作用1. 定义2. 核心价值二

C++ 检测文件大小和文件传输的方法示例详解

《C++检测文件大小和文件传输的方法示例详解》文章介绍了在C/C++中获取文件大小的三种方法,推荐使用stat()函数,并详细说明了如何设计一次性发送压缩包的结构体及传输流程,包含CRC校验和自动解... 目录检测文件的大小✅ 方法一:使用 stat() 函数(推荐)✅ 用法示例:✅ 方法二:使用 fsee

Windows下C++使用SQLitede的操作过程

《Windows下C++使用SQLitede的操作过程》本文介绍了Windows下C++使用SQLite的安装配置、CppSQLite库封装优势、核心功能(如数据库连接、事务管理)、跨平台支持及性能优... 目录Windows下C++使用SQLite1、安装2、代码示例CppSQLite:C++轻松操作SQ