c++11特性:独占的智能指针

2023-12-23 12:20
文章标签 c++ 指针 特性 智能 独占

本文主要是介绍c++11特性:独占的智能指针,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在C++中没有垃圾回收机制,必须自己释放分配的内存,否则就会造成内存泄露。解决这个问题最有效的方法是使用智能指针(smart pointer)。智能指针是存储指向动态分配(堆)对象指针的类,用于生存期的控制,能够确保在离开指针所在作用域时,自动地销毁动态分配的对象,防止内存泄露。智能指针的核心实现技术是引用计数,每使用它一次,内部引用计数加1,每析构一次内部的引用计数减1,减为0时,删除所指向的堆内存。

C++11中提供了三种智能指针,使用这些智能指针时需要引用头文件<memory>

  • std::shared_ptr:共享的智能指针
  • std::unique_ptr:独占的智能指针
  • std::weak_ptr:弱引用的智能指针,它不共享指针,不能操作资源,是用来监视shared_ptr的。

独占的智能指针的使用方法和共享的智能指针相似。 

1. 初始化 

std::unique_ptr是一个独占型的智能指针,它不允许其他的智能指针共享其内部的指针,可以通过它的构造函数初始化一个独占智能指针对象,但是不允许通过赋值将一个unique_ptr赋值给另一个unique_ptr。

// 通过构造函数初始化对象
unique_ptr<int> ptr1(new int(10));
// error, 不允许将一个unique_ptr赋值给另一个unique_ptr
unique_ptr<int> ptr2 = ptr1;

std::unique_ptr不允许复制,但是可以通过函数返回给其他的std::unique_ptr,还可以通过std::move来转译给其他的std::unique_ptr,这样原始指针的所有权就被转移了,这个原始指针还是被独占的。

#include <iostream>
#include <memory>
using namespace std;unique_ptr<int> func()
{return unique_ptr<int>(new int(520));
}int main()
{// 通过构造函数初始化unique_ptr<int> ptr1(new int(10));// 通过转移所有权的方式初始化unique_ptr<int> ptr2 = move(ptr1);// 即将被析构的临时对象unique_ptr<int> ptr3 = func();return 0;
}

unique_ptr独占智能指针类也有一个reset方法,函数原型如下:

void reset( pointer ptr = pointer() ) noexcept;

使用reset方法可以让unique_ptr解除对原始内存的管理,也可以用来初始化一个独占的智能指针。

int main()
{unique_ptr<int> ptr1(new int(10));unique_ptr<int> ptr2 = move(ptr1);ptr1.reset();ptr2.reset(new int(250));return 0;
}
  • ptr1.reset();解除对原始内存的管理
  • ptr2.reset(new int(250));重新指定智能指针管理的原始内存

 如果想要获取独占智能指针管理的原始地址,可以调用get()方法,函数原型如下:

pointer get() const noexcept;
int main()
{unique_ptr<int> ptr1(new int(10));unique_ptr<int> ptr2 = move(ptr1);ptr2.reset(new int(250));cout << *ptr2.get() << endl;	// 得到内存地址中存储的实际数值 250return 0;
}

接下来来用一段代码来简单演示上面用法的使用:

#include<iostream>
#include<memory>
using namespace std;class Test
{
public:Test(){cout << "construct Test..." << endl;}Test(int x) : m_num(x){cout << "construct Test,x = " << x << endl;}Test(string str){cout << "construct Test,str = " << str << endl;}~Test(){cout << "destruct Test..." << endl;}void setValue(int v){m_num = v;}void print(){cout << "m_num:" << m_num << endl;}private:int m_num;
};int main()
{ios::sync_with_stdio(0), cin.tie(0), cout.tie(0);// 通过构造函数初始化unique_ptr<int> ptr1(new int(9));//unique_ptr<int> ptr2 = ptr1;// error,指针是独占的,不能共享// // 通过移动构造函数初始化unique_ptr<int> ptr2 = move(ptr1);// 将ptr1的资源转移到ptr2是可以的// 通过reset初始化ptr2.reset(new int(8));//管理另一块内存// 获取原始指针unique_ptr<Test> ptr3(new Test(1));Test* pt = ptr3.get();pt->setValue(2);pt->print();ptr3->setValue(4);ptr3->print();return 0;
}

输出结果为:

construct Test,x = 1
m_num:2
m_num:4
destruct Test...

2. 删除器 

 unique_ptr指定删除器和shared_ptr指定删除器是有区别的,unique_ptr指定删除器的时候需要确定删除器的类型,所以不能像shared_ptr那样直接指定删除器,举例说明:

shared_ptr<int> ptr1(new int(10), [](int*p) {delete p; });	// ok
unique_ptr<int> ptr1(new int(10), [](int*p) {delete p; });	// errorint main()
{using func_ptr = void(*)(int*);unique_ptr<int, func_ptr> ptr1(new int(10), [](int*p) {delete p; });return 0;
}

在上面的代码中第7行,func_ptr的类型和lambda表达式的类型是一致的。在lambda表达式没有捕获任何变量的情况下是正确的,如果捕获了变量,编译时则会报错:

int main()
{using func_ptr = void(*)(int*);unique_ptr<int, func_ptr> ptr1(new int(10), [&](int*p) {delete p; });	// errorreturn 0;
}

 上面的代码中错误原因是这样的,在lambda表达式没有捕获任何外部变量时,可以直接转换为函数指针,一旦捕获了就无法转换了(是一个仿函数),如果想要让编译器成功通过编译,那么需要使用可调用对象包装器来处理声明的函数指针:

int main()
{using func_ptr = void(*)(int*);unique_ptr<int, function<void(int*)>> ptr1(new int(10), [&](int*p) {delete p; });return 0;
}

 接下来用一段代码来演示删除器的用法:

#include<iostream>
#include<memory>
using namespace std;class Test
{
public:Test(){cout << "construct Test..." << endl;}Test(int x) : m_num(x){cout << "construct Test,x = " << x << endl;}Test(string str){cout << "construct Test,str = " << str << endl;}~Test(){cout << "destruct Test..." << endl;}void setValue(int v){m_num = v;}void print(){cout << "m_num:" << m_num << endl;}private:int m_num;
};int main()
{ios::sync_with_stdio(0), cin.tie(0), cout.tie(0);// 通过构造函数初始化unique_ptr<int> ptr1(new int(9));//unique_ptr<int> ptr2 = ptr1;// error,指针是独占的,不能共享// // 通过移动构造函数初始化unique_ptr<int> ptr2 = move(ptr1);// 将ptr1的资源转移到ptr2是可以的// 通过reset初始化ptr2.reset(new int(8));//管理另一块内存// 获取原始指针unique_ptr<Test> ptr3(new Test(1));Test* pt = ptr3.get();pt->setValue(2);pt->print();ptr3->setValue(4);ptr3->print();using ptrFunc = void(*)(Test*);unique_ptr<Test, ptrFunc> ptr4(new Test("luffy"), [](Test* t) {cout << "----------------" << endl;delete t;});return 0;
}

输出结果为:

construct Test,x = 1
m_num:2
m_num:4
construct Test,str = luffy
----------------
destruct Test...
destruct Test...

由输出结果可以得知,ptr4管理的这块内存就被析构了。

若lambda表达式捕获外部变量,就需要将ptr4那块语句改为:

unique_ptr<Test, function<void(Test *)>> ptr5(new Test("luffy"), [=](Test* t) {cout << "----------------" << endl;delete t;});

 仿函数的类型只能通过可调用对象包装器对他的类型进行包装。

 特别需要注意的是:独占智能指针能自动释放内存。

 

#include<iostream>
#include<memory>
#include<functional>
using namespace std;class Test
{
public:Test(){cout << "construct Test..." << endl;}Test(int x) : m_num(x){cout << "construct Test,x = " << x << endl;}Test(string str){cout << "construct Test,str = " << str << endl;}~Test(){cout << "destruct Test..." << endl;}void setValue(int v){m_num = v;}void print(){cout << "m_num:" << m_num << endl;}private:int m_num;
};int main()
{ios::sync_with_stdio(0), cin.tie(0), cout.tie(0);// 通过构造函数初始化unique_ptr<int> ptr1(new int(9));//unique_ptr<int> ptr2 = ptr1;// error,指针是独占的,不能共享// // 通过移动构造函数初始化unique_ptr<int> ptr2 = move(ptr1);// 将ptr1的资源转移到ptr2是可以的// 通过reset初始化ptr2.reset(new int(8));//管理另一块内存// 获取原始指针unique_ptr<Test> ptr3(new Test(1));Test* pt = ptr3.get();pt->setValue(2);pt->print();ptr3->setValue(4);ptr3->print();using ptrFunc = void(*)(Test*);unique_ptr<Test, ptrFunc> ptr4(new Test("luffy"), [](Test* t) {cout << "----------------" << endl;delete t;});// 独占的智能指针可以管理数组类型的地址,能够自动释放// 在unique_ptr指定T [],删除器就知道删除的是一个数组类型的内存unique_ptr<Test[]> ptr5(new Test[3]{1, 2, 3});return 0;
}

输出结果为:

construct Test,x = 1
m_num:2
m_num:4
construct Test,str = luffy
construct Test,x = 1
construct Test,x = 2
construct Test,x = 3
destruct Test...
destruct Test...
destruct Test...
----------------
destruct Test...
destruct Test...

由输出结果可以看出,数组成功被析构了,先创建的后析构(在栈上)。 

在c++11后共享指针也可以自动释放数组内存了:

// 在c++11中shared_ptr6不支持下面的写法,c++11以后才支持的
shared_ptr<Test[]> ptr6(new Test[3]{ 1, 2, 3 });

本文参考:独占的智能指针 | 爱编程的大丙 (subingwen.cn) 

这篇关于c++11特性:独占的智能指针的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/528026

相关文章

C++初始化数组的几种常见方法(简单易懂)

《C++初始化数组的几种常见方法(简单易懂)》本文介绍了C++中数组的初始化方法,包括一维数组和二维数组的初始化,以及用new动态初始化数组,在C++11及以上版本中,还提供了使用std::array... 目录1、初始化一维数组1.1、使用列表初始化(推荐方式)1.2、初始化部分列表1.3、使用std::

C++ Primer 多维数组的使用

《C++Primer多维数组的使用》本文主要介绍了多维数组在C++语言中的定义、初始化、下标引用以及使用范围for语句处理多维数组的方法,具有一定的参考价值,感兴趣的可以了解一下... 目录多维数组多维数组的初始化多维数组的下标引用使用范围for语句处理多维数组指针和多维数组多维数组严格来说,C++语言没

c++中std::placeholders的使用方法

《c++中std::placeholders的使用方法》std::placeholders是C++标准库中的一个工具,用于在函数对象绑定时创建占位符,本文就来详细的介绍一下,具有一定的参考价值,感兴... 目录1. 基本概念2. 使用场景3. 示例示例 1:部分参数绑定示例 2:参数重排序4. 注意事项5.

使用C++将处理后的信号保存为PNG和TIFF格式

《使用C++将处理后的信号保存为PNG和TIFF格式》在信号处理领域,我们常常需要将处理结果以图像的形式保存下来,方便后续分析和展示,C++提供了多种库来处理图像数据,本文将介绍如何使用stb_ima... 目录1. PNG格式保存使用stb_imagephp_write库1.1 安装和包含库1.2 代码解

C++实现封装的顺序表的操作与实践

《C++实现封装的顺序表的操作与实践》在程序设计中,顺序表是一种常见的线性数据结构,通常用于存储具有固定顺序的元素,与链表不同,顺序表中的元素是连续存储的,因此访问速度较快,但插入和删除操作的效率可能... 目录一、顺序表的基本概念二、顺序表类的设计1. 顺序表类的成员变量2. 构造函数和析构函数三、顺序表

使用C++实现单链表的操作与实践

《使用C++实现单链表的操作与实践》在程序设计中,链表是一种常见的数据结构,特别是在动态数据管理、频繁插入和删除元素的场景中,链表相比于数组,具有更高的灵活性和高效性,尤其是在需要频繁修改数据结构的应... 目录一、单链表的基本概念二、单链表类的设计1. 节点的定义2. 链表的类定义三、单链表的操作实现四、

使用C/C++调用libcurl调试消息的方式

《使用C/C++调用libcurl调试消息的方式》在使用C/C++调用libcurl进行HTTP请求时,有时我们需要查看请求的/应答消息的内容(包括请求头和请求体)以方便调试,libcurl提供了多种... 目录1. libcurl 调试工具简介2. 输出请求消息使用 CURLOPT_VERBOSE使用 C

C++实现获取本机MAC地址与IP地址

《C++实现获取本机MAC地址与IP地址》这篇文章主要为大家详细介绍了C++实现获取本机MAC地址与IP地址的两种方式,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 实际工作中,项目上常常需要获取本机的IP地址和MAC地址,在此使用两种方案获取1.MFC中获取IP和MAC地址获取

C/C++通过IP获取局域网网卡MAC地址

《C/C++通过IP获取局域网网卡MAC地址》这篇文章主要为大家详细介绍了C++如何通过Win32API函数SendARP从IP地址获取局域网内网卡的MAC地址,感兴趣的小伙伴可以跟随小编一起学习一下... C/C++通过IP获取局域网网卡MAC地址通过win32 SendARP获取MAC地址代码#i

C++中使用vector存储并遍历数据的基本步骤

《C++中使用vector存储并遍历数据的基本步骤》C++标准模板库(STL)提供了多种容器类型,包括顺序容器、关联容器、无序关联容器和容器适配器,每种容器都有其特定的用途和特性,:本文主要介绍C... 目录(1)容器及简要描述‌php顺序容器‌‌关联容器‌‌无序关联容器‌(基于哈希表):‌容器适配器‌:(