04-基于GEC6818开发板的触摸实现——电子相册实例

2023-12-23 07:52

本文主要是介绍04-基于GEC6818开发板的触摸实现——电子相册实例,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

基于GEC6818开发板的触摸实现——电子相册

本文主要涉及GEC6818开发板实现对触摸屏的相关操作,可以识别上下左右的滑动,通过滑动来进行图片的切换——电子相册。
其他相关GEC6818开发板的内容可以参考:
01-基于粤嵌GEC6818实现屏幕的显示固定颜色进行自动切换
02-基于GEC6818开发板的画正方形、画圆的操作——使用mmap映射提高效率
03-基于GEC6818开发板实现BMP图片的加载——实例分析

文章目录

  • 基于GEC6818开发板的触摸实现——电子相册
    • 一、 关于交互相关命令
      • 1.1 通用叙述
        • 1.1.1 `struct timeval time`
        • 1.1.2 `__u16 type`
        • 1.1.3 `__u16 code`
        • 1.1.4 `__s32 value`
      • 1.2 触摸事件详细叙述
        • 1.2.1 `struct timeval time`
        • 1.2.2 `__u16 type`
        • 1.2.3 `__u16 code`
        • 1.2.4 `__s32 value`
    • 二、实例分析使用触摸屏进行图片的切换(电子相册)
      • 2.1 代码实现
      • 2.2 代码解析

一、 关于交互相关命令

1.1 通用叙述

struct input_event {
struct timeval time;
__u16 type;
__u16 code;
__s32 value;
};

下面具体的

1.1.1 struct timeval time
  • 定义: struct timeval 是一个结构体,通常用于表示时间间隔或时间戳。要实现长按或者点击需要使用到这个参数

  • 成员:

    • time.tv_sec: 从1970年1月1日开始的秒数。
    • time.tv_usec: 微秒部分,即秒数的小数部分。
  • 作用: 为事件提供一个时间戳,告诉我们事件发生的确切时间。

1.1.2 __u16 type
  • 定义: __u16 是一个无符号16位整数,用于存储事件的类型。

  • 常见的类型:

    • EV_SYN: 同步事件,表示事件的序列结束。(0x00)
    • EV_KEY: 键盘或按钮事件。(0x01)
    • EV_REL: 相对位置事件,例如鼠标的移动。(0x02)
    • EV_ABS: 绝对位置事件,例如触摸屏的触摸。(0x03)
    • EV_MSC: 其他杂项事件。(0x04)
    • … 以及其他的类型。
1.1.3 __u16 code
  • 定义: __u16 是一个无符号16位整数,用于存储事件的代码。

  • 作用: 当事件类型已知时,代码提供了更具体的信息。例如,如果事件类型是EV_KEY,那么代码可能表示哪个键被按下或释放。

1.1.4 __s32 value
  • 定义: __s32 是一个带符号的32位整数,用于存储事件的值。

  • 作用: 根据事件类型和代码,值字段表示事件的具体情况。例如,对于EV_KEY事件,值为0可能表示键被释放,而值为1可能表示键被按下。


综上所述,input_event结构体为Linux输入子系统提供了一个标准化的方式来描述各种输入设备发送的事件。通过时间戳、事件类型、代码和值,应用程序可以精确地知道何时、从哪个设备和发生了什么类型的事件。


1.2 触摸事件详细叙述

当事件类型为触摸事件时(即typeEV_ABS),input_event结构体中的参数具有以下含义:

1.2.1 struct timeval time
  • 时间戳: 告诉我们触摸事件发生的确切时间。
1.2.2 __u16 type
  • 类型: 固定为EV_ABS,表示这是一个绝对位置事件,通常与触摸屏有关。
1.2.3 __u16 code
  • 代码: 用于标识触摸事件的具体方面。常见的代码包括:
    • ABS_X: 触摸点在X轴上的位置。
    • ABS_Y: 触摸点在Y轴上的位置。
    • ABS_PRESSURE: 触摸点的压力级别(如果支持)。(值为330)
    • ABS_MT_SLOT: 多点触摸的槽位(用于区分多个触摸点)。
    • ABS_MT_TRACKING_ID: 多点触摸的跟踪ID。
    • … 以及其他的代码。
1.2.4 __s32 value
  • : 表示与触摸事件相关的具体信息。
    • 对于ABS_XABS_Y,值表示触摸点在屏幕上的位置。
    • 对于ABS_PRESSURE,值表示触摸点的压力级别。
    • 对于ABS_MT_SLOT,值表示当前操作的触摸点槽位。
    • 对于ABS_MT_TRACKING_ID,值表示触摸点的唯一跟踪ID。

这些参数结合起来,使应用程序能够完全了解触摸事件的各个方面,从而实现更加复杂和精确的交互响应。例如,您可以使用ABS_XABS_Y的值来确定用户在屏幕上触摸的位置,然后根据触摸点的压力和移动来实现不同的操作或效果。

二、实例分析使用触摸屏进行图片的切换(电子相册)

2.1 代码实现

实现图片的切换

#include <stdio.h>
#include <fcntl.h>
#include <unistd.h>
#include <sys/mman.h>
#include <stdlib.h> 
#include <linux/input.h>int lcd_fd = -1; // 全局的lcd描述符
unsigned int* plcd = NULL;
#define TOUCH_PATH "/dev/input/event0"void lcdinit() {lcd_fd = open("/dev/fb0", O_RDWR);if (-1 == lcd_fd) {perror("open fb0 error");exit(1);}plcd = mmap(NULL, 800 * 480 * 4, PROT_READ | PROT_WRITE, MAP_SHARED, lcd_fd, 0);if (plcd == MAP_FAILED) {perror("mmap error");return;}
}void lcd_destory() {munmap(plcd, 800 * 480 * 4);close(lcd_fd);
}void point(int x, int y, unsigned int color) {if (x >= 0 && x < 800 && y >= 0 && y < 480) {*(plcd + y * 800 + x) = color;}
}
//添加背景颜色-color
void display_bgm(int color) {int w =800,h=480;int x, y;for (y = 0; y < h; y++) {for (x = 0; x < w; x++) {point(x , y , color);}}
}void display_mid(const char* filename)
{display_bgm(0xFFFFFF);int x0,y0;//打开文件int fd = open(filename, O_RDONLY);if(-1 == fd){perror("open bmp error");return;}//判断是否为真的BMP文件unsigned char buf[2];read(fd,buf,2);if(buf[0]!= 0x42 || buf[1]!= 0x4d)//若果不是B M 的ASCII码{printf("NOT BMP\n");return;}//读取数据int width,height,depth;//读取宽度,将偏移量偏移到宽度lseek(fd,0x12,SEEK_SET);read(fd,&width,4);//读取四个字节read(fd,&height,4);//高度lseek(fd,0x1c,SEEK_SET);read(fd,&depth,4);//只支持色深24和32if(!(depth == 24 || depth == 32)){printf("NOT Support!\n");return;}printf("width = %d height = %d depth = %d ", width,height,depth);//处理居中的情况if(width<800||height<480){x0 = (int)(800-width)/2;y0 = (int)(480-height)/2;}//4.获取像素数组int line_valid_bytes = abs(width)*depth/8;//一行有效字节数int line_bytes;//一行总字节数=有效字节数+赖子数 int laizi = 0;if(line_valid_bytes%4){laizi = 4-line_valid_bytes%4;}line_bytes = line_valid_bytes + laizi;int total_bytes = line_bytes*abs(height);//整个像素数组的大小//开辟一块动态内存unsigned char *piexl = (unsigned char *)malloc(total_bytes);    //用完后需要释放内存lseek(fd,54,SEEK_SET);read(fd,piexl,total_bytes);unsigned char a,r,g,b;int color;int i = 0;int x,y;for(y=0;y<abs(height);y++){for(x=0;x<abs(width);x++){//a r g b 0xargb 小端模式  b g r ab = piexl[i++];g = piexl[i++];r = piexl[i++];if(depth == 32)//32 色的有透明度,但是对24位的来说无所谓这个a的都无效{a = piexl[i++];}else{a = 0;//不透明}color=(a<<24)|(r<<16)|(g<<8)|(b);//在屏幕对应的位置显示point(width>0?x0+x:x0+abs(width)-x-1, height>0?y0+abs(height)-y-1:y0+y,color);}//每一行的末尾 有可能填充几个赖子i += laizi;}//释放内存free(piexl);//关闭文件close(fd);
}int GetDirection()
{//1.打开触摸屏 lcdinit();int fd = open(TOUCH_PATH,O_RDONLY);//只读打开if(fd<0){perror("open fail");return 0;}int x_start=-1,y_start=-1;	//坐标的初值int x_end = -1,y_end = -1;    //坐标终点struct input_event ev;int flag=0;while(1){//2.不停地从文件中读取数据int r=read(fd, &ev, sizeof(struct input_event));if(sizeof(ev)!=r)//等待响应--如果当时没反应,可以容忍,进行等待{usleep(10);flag++;if(flag>=10){perror("read ev error");break;}continue;}flag=0;//3.解析数据if(ev.type == EV_ABS)   //触摸事件 {if(ev.code == ABS_X){if (-1 == x_start)        //x轴{x_start = ev.value;	//起点}x_end = ev.value;      //终点}if(ev.code == ABS_Y)		//y轴{if (-1 == y_start){y_start = ev.value;}y_end = ev.value;      //终点}if(ev.code ==ABS_PRESSURE && ev.value == 0){if(x_start != -1 && y_start != -1){break;}}}if(ev.type == EV_KEY && ev.code == BTN_TOUCH && ev.value == 0)   //按键事件{if(x_start != -1 && y_start != -1){break;}}if (abs(x_end - x_start) > (y_end - y_start)){if (x_end - x_start > 0){return 4;}else{return 3;}}if (abs(x_end - x_start) < (y_end - y_start)){if (y_end - y_start > 0){return 2;}else{return 1;}}}//打印坐标printf("%d , %d\n", x_end, y_start);//4.关闭触摸屏lcd_destory();
}int main()
{//1 openconst char* images[] = {"1.bmp","2.bmp","3.bmp"};int num_images = sizeof(images) / sizeof(images[0]);int current_image_index = 0;int direction=0;while(1){direction=GetDirection();printf("%d\n",direction);if (1 == direction || 3 == direction){if (3 == current_image_index){current_image_index = 0;}elsecurrent_image_index++;display_mid(images[current_image_index]);}else if (2 == direction || 4 == direction){if (0 == current_image_index){current_image_index = 2;}elsecurrent_image_index--;display_mid(images[current_image_index]);}}return 0;}

2.2 代码解析

上面代码的核心函数是获取滑动方向的函数,这个GetDirection函数的主要目的是从触摸屏设备中获取一个触摸的方向,并返回相应的方向值。

以下是该函数的主要步骤和思路:

  1. 初始化触摸屏:使用lcdinit()函数初始化触摸屏设备。

  2. 打开触摸屏设备:通过open系统调用打开触摸屏设备文件。

  3. 读取输入事件:使用read系统调用从触摸屏设备文件中读取输入事件。

  4. 解析输入事件:检查读取到的输入事件的类型和代码。

    • 如果事件类型是EV_ABS,则它是一个绝对坐标事件,通常与触摸屏的X和Y坐标相关。
      • 如果代码是ABS_X,则更新X坐标的起点和终点。
      • 如果代码是ABS_Y,则更新Y坐标的起点和终点。
      • 如果代码是ABS_PRESSURE并且值为0,表示触摸事件结束,程序将退出循环。
    • 如果事件类型是EV_KEY并且代码是BTN_TOUCH,则表示触摸事件结束,程序将退出循环。
  5. 判断触摸方向

    • 使用X和Y坐标的起点和终点来确定触摸方向。
    • 如果X方向的变化(x_end - x_start)的绝对值大于Y方向的变化(y_end - y_start),则认为是水平滑动。
      • 如果X方向是正的,则返回值为4(可能表示右滑动)。
      • 如果X方向是负的,则返回值为3(可能表示左滑动)。
    • 如果Y方向的变化(y_end - y_start)的绝对值大于X方向的变化,则认为是垂直滑动。
      • 如果Y方向是正的,则返回值为2(可能表示向下滑动)。
      • 如果Y方向是负的,则返回值为1(可能表示向上滑动)。
  6. 关闭触摸屏:使用lcd_destory()函数关闭触摸屏设备。

总之,该函数的核心逻辑是基于从触摸屏设备读取的输入事件来确定并返回触摸的方向。

这篇关于04-基于GEC6818开发板的触摸实现——电子相册实例的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/527273

相关文章

C++对象布局及多态实现探索之内存布局(整理的很多链接)

本文通过观察对象的内存布局,跟踪函数调用的汇编代码。分析了C++对象内存的布局情况,虚函数的执行方式,以及虚继承,等等 文章链接:http://dev.yesky.com/254/2191254.shtml      论C/C++函数间动态内存的传递 (2005-07-30)   当你涉及到C/C++的核心编程的时候,你会无止境地与内存管理打交道。 文章链接:http://dev.yesky

swiper实例

大家好,我是燐子,今天给大家带来swiper实例   微信小程序中的 swiper 组件是一种用于创建滑动视图的容器组件,常用于实现图片轮播、广告展示等效果。它通过一系列的子组件 swiper-item 来定义滑动视图的每一个页面。 基本用法   以下是一个简单的 swiper 示例代码:   WXML(页面结构) <swiper autoplay="true" interval="3

Java面试题:通过实例说明内连接、左外连接和右外连接的区别

在 SQL 中,连接(JOIN)用于在多个表之间组合行。最常用的连接类型是内连接(INNER JOIN)、左外连接(LEFT OUTER JOIN)和右外连接(RIGHT OUTER JOIN)。它们的主要区别在于它们如何处理表之间的匹配和不匹配行。下面是每种连接的详细说明和示例。 表示例 假设有两个表:Customers 和 Orders。 Customers CustomerIDCus

通过SSH隧道实现通过远程服务器上外网

搭建隧道 autossh -M 0 -f -D 1080 -C -N user1@remotehost##验证隧道是否生效,查看1080端口是否启动netstat -tuln | grep 1080## 测试ssh 隧道是否生效curl -x socks5h://127.0.0.1:1080 -I http://www.github.com 将autossh 设置为服务,隧道开机启动

时序预测 | MATLAB实现LSTM时间序列未来多步预测-递归预测

时序预测 | MATLAB实现LSTM时间序列未来多步预测-递归预测 目录 时序预测 | MATLAB实现LSTM时间序列未来多步预测-递归预测基本介绍程序设计参考资料 基本介绍 MATLAB实现LSTM时间序列未来多步预测-递归预测。LSTM是一种含有LSTM区块(blocks)或其他的一种类神经网络,文献或其他资料中LSTM区块可能被描述成智能网络单元,因为

vue项目集成CanvasEditor实现Word在线编辑器

CanvasEditor实现Word在线编辑器 官网文档:https://hufe.club/canvas-editor-docs/guide/schema.html 源码地址:https://github.com/Hufe921/canvas-editor 前提声明: 由于CanvasEditor目前不支持vue、react 等框架开箱即用版,所以需要我们去Git下载源码,拿到其中两个主

android一键分享功能部分实现

为什么叫做部分实现呢,其实是我只实现一部分的分享。如新浪微博,那还有没去实现的是微信分享。还有一部分奇怪的问题:我QQ分享跟QQ空间的分享功能,我都没配置key那些都是原本集成就有的key也可以实现分享,谁清楚的麻烦详解下。 实现分享功能我们可以去www.mob.com这个网站集成。免费的,而且还有短信验证功能。等这分享研究完后就研究下短信验证功能。 开始实现步骤(新浪分享,以下是本人自己实现

基于Springboot + vue 的抗疫物质管理系统的设计与实现

目录 📚 前言 📑摘要 📑系统流程 📚 系统架构设计 📚 数据库设计 📚 系统功能的具体实现    💬 系统登录注册 系统登录 登录界面   用户添加  💬 抗疫列表展示模块     区域信息管理 添加物资详情 抗疫物资列表展示 抗疫物资申请 抗疫物资审核 ✒️ 源码实现 💖 源码获取 😁 联系方式 📚 前言 📑博客主页:

探索蓝牙协议的奥秘:用ESP32实现高质量蓝牙音频传输

蓝牙(Bluetooth)是一种短距离无线通信技术,广泛应用于各种电子设备之间的数据传输。自1994年由爱立信公司首次提出以来,蓝牙技术已经经历了多个版本的更新和改进。本文将详细介绍蓝牙协议,并通过一个具体的项目——使用ESP32实现蓝牙音频传输,来展示蓝牙协议的实际应用及其优点。 蓝牙协议概述 蓝牙协议栈 蓝牙协议栈是蓝牙技术的核心,定义了蓝牙设备之间如何进行通信。蓝牙协议

python实现最简单循环神经网络(RNNs)

Recurrent Neural Networks(RNNs) 的模型: 上图中红色部分是输入向量。文本、单词、数据都是输入,在网络里都以向量的形式进行表示。 绿色部分是隐藏向量。是加工处理过程。 蓝色部分是输出向量。 python代码表示如下: rnn = RNN()y = rnn.step(x) # x为输入向量,y为输出向量 RNNs神经网络由神经元组成, python