特征处理过程 中的 独热编码(onehot)与哑变量及python 代码实现

2023-12-22 19:58

本文主要是介绍特征处理过程 中的 独热编码(onehot)与哑变量及python 代码实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

为什么要用onehot:

.  为什么使用one-hot编码来处理离散型特征?

1.使用one-hot编码,将离散特征的取值扩展到了欧式空间,离散特征的某个取值就对应欧式空间的某个点

2.将离散特征通one-hot编码映射到欧式空间,是因为,在回归,分类,聚类等机器学习算法中,特征之间距离的计算或相似度的计算是非常重要的,而我们常用的距离或相似度的计算都是在欧式空间的相似度计算,计算余弦相似性,基于的就是欧式空间。

3.将离散型特征使用one-hot编码,确实会让特征之间的距离计算更加合理。比如,有一个离散型特征,代表工作类型,该离散型特征,共有三个取,不使用one-hot编码,其表示分别是x_1 = (1), x_2 = (2), x_3 = (3)。两个工作之的距离是,(x_1, x_2) = 1, d(x_2, x_3) = 1, d(x_1, x_3) = 2。那么x_1x_3工作之就越不相似这样的表示,算出来的特征的距离是不合理。那如果使用one-hot编码,则得到x_1 = (1, 0, 0), x_2 = (0, 1, 0), x_3 = (0, 0, 1),那么两个工作之的距离就都是sqrt(2).即每两个工作之的距离是一的,得更合理。

4.对离散型特征进行one-hot编码是为了让距离的计算显得更加合理

5.将离散型特征one-hot编码的作用,是为了让距离计算更合理,但如果特征是离散的,并且不用one-hot编码就可以很合理的计算出距离,那么就没必要进行one-hot编码,比如,该离散特征共有1000个取,我分成两,分400600,两个小的距离有合适的定内的距离也有合适的定,那就没必要用one-hot 编码
离散特征one-hot编码后,编码后的特征,其实每一维度的特征都可以看做是连续的特征。就可以跟对连续型特征的归一化方法一样,对每一维特征进行归一化。比如归一化到[-1,1]一化到均值为0,方差1

 

其他解释:

在分类和聚类运算中我们经常计算两个个体之间的距离,对于连续的数字(Numric)这一点不成问题,但是对于名词性(Norminal)的类别,计算距离很难。即使将类别与数字对应,例如{‘A’‘B’‘C’}[0,1,2]对应,我们也不能认为ABBC距离为1,而AC距离为2。独热编码正是为了处理这种距离的度量,该方法认为每个类别之间的距离是一样的。该方法将类别与向量对应,例如{‘A’‘B’‘C’}分别与[1,0,0],[0,1,0],[0,0,1]对应,注意现在各个类别之间的ß欧式距离是相同的。

独热编码即 One-Hot 编码,又称一位有效编码,其方法是使用N位状态寄存器来对N个状态进行编码,每个状态都由他独立的寄存器位,并且在任意时候,其中只有一位有效。

这样做的好处主要有:

  1. 解决了分类器不好处理属性数据的问题
  2. 在一定程度上也起到了扩充特征的作用

------------------------------------------------------------------------------------------------

关于独热编码和哑变量的区别:

基于sklearn 的one hot encoding:http://blog.csdn.net/u010159842/article/details/54410099

独热编码在数据处理中的作用:http://www.cnblogs.com/whisper-yi/p/6079177.html

独热编码和哑变量的不同作用:https://www.zhihu.com/question/48674426

 

哑变量与独热编码的区别:

本质上差不多,哑变量常用于回归模型,one-hot在任何模型都可以用

哑变量在pandas的get_dummy方法,one-hot在sklearn,就是不同的库from sklearn.preprocessing import OneHotEncoder

 

最常用的编码:应该还是one-hot用的多,pandas机制问题,它需要在内存中把数据集都读入进来,要是数据量大的话,太消耗资源,one-hot可以读数组,因此大规模数据集很方便

#-*- coding:utf-8 -*-
#onehot
from sklearn import preprocessing  
import pandas as pd
import numpy as np
enc = preprocessing.OneHotEncoder()  #相关onehot的包#独热编码
def set_OneHotEncoder(data,colname,start_index,end_index):'''data -- [[1,2,3,4,7],[0,5,6,8,9]]start_index -- 起始列位置索引end_index -- 结束列位置索引. 如start_index为1,end_index为3,则取出来的为[[2,3,4],[5,6,8]]'''#if type(data) == pandas.core.frame.DataFrame:#data = np.array(data).tolist()if type(data) != list:return  'Error dataType, expect list but ' + str(type(data))_data,_colname =[line[:start_index] for line in data],colname[:start_index]data_,colname_ = [line[end_index+1:] for line in data],colname[end_index+1:]data = [line[start_index:end_index+1] for line in data]data = pd.DataFrame(data)data.columns = colname[start_index:end_index+1]enc.fit(data)x_ = enc.transform(data).toarray() #已生成x_ = [list(line) for line in x_]#加栏目名new_columns = []for col in data.columns:dd = sorted(list(set(list(data[col])))) #去重并根据升序排列for line in dd:new_columns.append(str(col)+'#'+str(line))end_x = list(map(lambda x,y,z:x+y+z,_data,x_,data_))end_columns = list(_colname)+new_columns+list(colname_)x__ = pd.DataFrame(end_x,columns = end_columns)return x__ #返回数据框形式#哑变量
# 对性别、职业等因子变量,构造其哑变量(虚拟变量)
def set_dummies(data, colname):for col in colname:data[col] = data[col].astype('category')#转换成数据类别类型,pandas用法dummy = pd.get_dummies(data[col])  #get_dummies为pandas里面求哑变量的包dummy = dummy.add_prefix('{}#'.format(col)) #add_prefix为加上前缀data.drop(col,axis = 1,inplace = True)data = data.join(dummy) #index即为userid,所以可以用joinreturn dataif __name__ == '__main__':xlst = [[0,2,1,3,4,5],[9,1,1,4,5,6],[8,9,2,3,4,6],[8,11,23,56,78,99]]x = pd.DataFrame(xlst)x.columns = ['a','b','c','d','e','f']y = [1,0,1,1,1]print('----------------------------以下为onehot----------------------------------')print(set_OneHotEncoder(xlst,x.columns,2,4))print('----------------------------以下为哑变量----------------------------------')print(set_dummies(x,x.columns))

 

 

 

 

 

这篇关于特征处理过程 中的 独热编码(onehot)与哑变量及python 代码实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/525263

相关文章

Python将博客内容html导出为Markdown格式

《Python将博客内容html导出为Markdown格式》Python将博客内容html导出为Markdown格式,通过博客url地址抓取文章,分析并提取出文章标题和内容,将内容构建成html,再转... 目录一、为什么要搞?二、准备如何搞?三、说搞咱就搞!抓取文章提取内容构建html转存markdown

Python获取中国节假日数据记录入JSON文件

《Python获取中国节假日数据记录入JSON文件》项目系统内置的日历应用为了提升用户体验,特别设置了在调休日期显示“休”的UI图标功能,那么问题是这些调休数据从哪里来呢?我尝试一种更为智能的方法:P... 目录节假日数据获取存入jsON文件节假日数据读取封装完整代码项目系统内置的日历应用为了提升用户体验,

SpringBoot3实现Gzip压缩优化的技术指南

《SpringBoot3实现Gzip压缩优化的技术指南》随着Web应用的用户量和数据量增加,网络带宽和页面加载速度逐渐成为瓶颈,为了减少数据传输量,提高用户体验,我们可以使用Gzip压缩HTTP响应,... 目录1、简述2、配置2.1 添加依赖2.2 配置 Gzip 压缩3、服务端应用4、前端应用4.1 N

SpringBoot实现数据库读写分离的3种方法小结

《SpringBoot实现数据库读写分离的3种方法小结》为了提高系统的读写性能和可用性,读写分离是一种经典的数据库架构模式,在SpringBoot应用中,有多种方式可以实现数据库读写分离,本文将介绍三... 目录一、数据库读写分离概述二、方案一:基于AbstractRoutingDataSource实现动态

Python FastAPI+Celery+RabbitMQ实现分布式图片水印处理系统

《PythonFastAPI+Celery+RabbitMQ实现分布式图片水印处理系统》这篇文章主要为大家详细介绍了PythonFastAPI如何结合Celery以及RabbitMQ实现简单的分布式... 实现思路FastAPI 服务器Celery 任务队列RabbitMQ 作为消息代理定时任务处理完整

Python Websockets库的使用指南

《PythonWebsockets库的使用指南》pythonwebsockets库是一个用于创建WebSocket服务器和客户端的Python库,它提供了一种简单的方式来实现实时通信,支持异步和同步... 目录一、WebSocket 简介二、python 的 websockets 库安装三、完整代码示例1.

揭秘Python Socket网络编程的7种硬核用法

《揭秘PythonSocket网络编程的7种硬核用法》Socket不仅能做聊天室,还能干一大堆硬核操作,这篇文章就带大家看看Python网络编程的7种超实用玩法,感兴趣的小伙伴可以跟随小编一起... 目录1.端口扫描器:探测开放端口2.简易 HTTP 服务器:10 秒搭个网页3.局域网游戏:多人联机对战4.

springboot循环依赖问题案例代码及解决办法

《springboot循环依赖问题案例代码及解决办法》在SpringBoot中,如果两个或多个Bean之间存在循环依赖(即BeanA依赖BeanB,而BeanB又依赖BeanA),会导致Spring的... 目录1. 什么是循环依赖?2. 循环依赖的场景案例3. 解决循环依赖的常见方法方法 1:使用 @La

Java枚举类实现Key-Value映射的多种实现方式

《Java枚举类实现Key-Value映射的多种实现方式》在Java开发中,枚举(Enum)是一种特殊的类,本文将详细介绍Java枚举类实现key-value映射的多种方式,有需要的小伙伴可以根据需要... 目录前言一、基础实现方式1.1 为枚举添加属性和构造方法二、http://www.cppcns.co

使用Python实现快速搭建本地HTTP服务器

《使用Python实现快速搭建本地HTTP服务器》:本文主要介绍如何使用Python快速搭建本地HTTP服务器,轻松实现一键HTTP文件共享,同时结合二维码技术,让访问更简单,感兴趣的小伙伴可以了... 目录1. 概述2. 快速搭建 HTTP 文件共享服务2.1 核心思路2.2 代码实现2.3 代码解读3.