容斥原理-shuoj—小明系列之高中时光

2023-12-22 17:32

本文主要是介绍容斥原理-shuoj—小明系列之高中时光,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Description

小明是一个聪明的小孩,虽然初中没有前三年学习成绩都很差。但是凭借这中考前最后几个月的冲刺还是考进了一所离家里比较近的普通高中。刚进入高中小明对课堂上老师讲授的问题依然没有什么兴趣。但是小明的聪明头脑依然不会停止转动。平时只要一闲下来就会去思考一些有趣的数学问题。今天小明学校开运动会,小明和他的同学们都坐在操场上观看开幕仪式。爱思考的小明又闲不住了,正好小明身边有k个石子,小明又在地板上画了一个m行n列的矩形网格,问题是有多少种方法可以将这k个石子放进网格里?现在要你写程序计算这个问题,看看你能不能借助计算机的力量算的比小明快。每个格子最多放一个石子,所有的石子必须用完,另外小明为了加大难度又加了一个条件:第一行、最后一行、第一列、最后一列都得有石子。

Input

输入第一行为数据组数T(T<=50),每组数据包含三个整数m,n,k(2<=m,n<=20,k<=500)。输入数据至文件结尾。

Output

对于每组数据输出一行,方案总数除以1000007的余数。

Sample Input

22 2 12 3 2

Sample Output

02

题解:
容斥原理(p(A+B) = p(A) + P(B) - P(AB))  (百度链接,点击打开链接)。

组合数 (百度链接 点击打开链接)

本题主要运用了容斥原理和求组合数(组合数链接,点击打开链接)。

现在具体分析这道题。

四个边上都有点的组合  =  总组合数  -  四个边中至少有一个边没有点的组合数。

将问题转化成 求:四个边中至少有一个边没有点的组合数

用数组 dp[ i ][ j ]来保存组合数C(i  ,  j)。

由容斥原理:

设A=  上边没点
    B = 下边没点
    C = 左边没点
    D = 右边没点
四个边中至少有一个边没有点  =  A + B +  C  + D -AB - AC - AD  - BC - BD  -CD + ABC + ABD + ACD + BCD - ABCD

分别求出上述独立事件的组合数即为最终结果。



代码如下:
#include<bits/stdc++.h>
using namespace std;
const int mod = 1000007;
long long dp[405][405];//将组合数打表
void com(){memset(dp,0,sizeof(dp));dp[0][0] = 1;dp[1][0] = 1;dp[1][1] = 1;for(int i = 2;i<401;i++){for(int j = 0;j<=i;j++){if(j == 0||j == i)dp[i][j] = 1;else dp[i][j] = (dp[i-1][j-1]+dp[i-1][j])%mod;}}
}
int main(){com();int T;cin>>T;while(T--){int m,n,k;cin>>m>>n>>k;if(k<2||k>m*n){cout<<0<<endl;continue;}long long sum;sum = (dp[n*m][k] - 2*dp[(n-1)*m][k] - 2*dp[n*(m-1)][k]+mod)%mod;while(sum<0)sum+=mod;sum = (sum + dp[(n-2)*m][k] + dp[(m-2)*n][k] + 4 * dp[(n-1)*(m-1)][k])%mod;while(sum<0)sum+=mod;sum = (sum - 2*dp[(n-2)*(m-1)][k] - 2*dp[(m-2)*(n-1)][k]+mod)%mod;while(sum<0)sum+=mod;sum = (sum + dp[(n-2)*(m-2)][k])%mod;while(sum<0)sum+=mod;cout<<sum<<endl;}
谢谢!

这篇关于容斥原理-shuoj—小明系列之高中时光的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/524835

相关文章

Java编译生成多个.class文件的原理和作用

《Java编译生成多个.class文件的原理和作用》作为一名经验丰富的开发者,在Java项目中执行编译后,可能会发现一个.java源文件有时会产生多个.class文件,从技术实现层面详细剖析这一现象... 目录一、内部类机制与.class文件生成成员内部类(常规内部类)局部内部类(方法内部类)匿名内部类二、

Python中随机休眠技术原理与应用详解

《Python中随机休眠技术原理与应用详解》在编程中,让程序暂停执行特定时间是常见需求,当需要引入不确定性时,随机休眠就成为关键技巧,下面我们就来看看Python中随机休眠技术的具体实现与应用吧... 目录引言一、实现原理与基础方法1.1 核心函数解析1.2 基础实现模板1.3 整数版实现二、典型应用场景2

Java的IO模型、Netty原理解析

《Java的IO模型、Netty原理解析》Java的I/O是以流的方式进行数据输入输出的,Java的类库涉及很多领域的IO内容:标准的输入输出,文件的操作、网络上的数据传输流、字符串流、对象流等,这篇... 目录1.什么是IO2.同步与异步、阻塞与非阻塞3.三种IO模型BIO(blocking I/O)NI

JAVA封装多线程实现的方式及原理

《JAVA封装多线程实现的方式及原理》:本文主要介绍Java中封装多线程的原理和常见方式,通过封装可以简化多线程的使用,提高安全性,并增强代码的可维护性和可扩展性,需要的朋友可以参考下... 目录前言一、封装的目标二、常见的封装方式及原理总结前言在 Java 中,封装多线程的原理主要围绕着将多线程相关的操

kotlin中的模块化结构组件及工作原理

《kotlin中的模块化结构组件及工作原理》本文介绍了Kotlin中模块化结构组件,包括ViewModel、LiveData、Room和Navigation的工作原理和基础使用,本文通过实例代码给大家... 目录ViewModel 工作原理LiveData 工作原理Room 工作原理Navigation 工

Java的volatile和sychronized底层实现原理解析

《Java的volatile和sychronized底层实现原理解析》文章详细介绍了Java中的synchronized和volatile关键字的底层实现原理,包括字节码层面、JVM层面的实现细节,以... 目录1. 概览2. Synchronized2.1 字节码层面2.2 JVM层面2.2.1 ente

MySQL的隐式锁(Implicit Lock)原理实现

《MySQL的隐式锁(ImplicitLock)原理实现》MySQL的InnoDB存储引擎中隐式锁是一种自动管理的锁,用于保证事务在行级别操作时的数据一致性和安全性,本文主要介绍了MySQL的隐式锁... 目录1. 背景:什么是隐式锁?2. 隐式锁的工作原理3. 隐式锁的类型4. 隐式锁的实现与源代码分析4

MySQL中Next-Key Lock底层原理实现

《MySQL中Next-KeyLock底层原理实现》Next-KeyLock是MySQLInnoDB存储引擎中的一种锁机制,结合记录锁和间隙锁,用于高效并发控制并避免幻读,本文主要介绍了MySQL中... 目录一、Next-Key Lock 的定义与作用二、底层原理三、源代码解析四、总结Next-Key L

Spring Cloud Hystrix原理与注意事项小结

《SpringCloudHystrix原理与注意事项小结》本文介绍了Hystrix的基本概念、工作原理以及其在实际开发中的应用方式,通过对Hystrix的深入学习,开发者可以在分布式系统中实现精细... 目录一、Spring Cloud Hystrix概述和设计目标(一)Spring Cloud Hystr

MySQL中的MVCC底层原理解读

《MySQL中的MVCC底层原理解读》本文详细介绍了MySQL中的多版本并发控制(MVCC)机制,包括版本链、ReadView以及在不同事务隔离级别下MVCC的工作原理,通过一个具体的示例演示了在可重... 目录简介ReadView版本链演示过程总结简介MVCC(Multi-Version Concurr