QEMU源码全解析 —— virtio(19)

2023-12-21 11:20
文章标签 源码 解析 19 qemu virtio

本文主要是介绍QEMU源码全解析 —— virtio(19),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

接前一篇文章:

上回书继续讲解virtio_pci_driver的probe回调函数virtio_pci_probe(),在讲到第5段代码的时候,

    if (force_legacy) {rc = virtio_pci_legacy_probe(vp_dev);/* Also try modern mode if we can't map BAR0 (no IO space). */if (rc == -ENODEV || rc == -ENOMEM)rc = virtio_pci_modern_probe(vp_dev);if (rc)goto err_probe;} else {rc = virtio_pci_modern_probe(vp_dev);if (rc == -ENODEV)rc = virtio_pci_legacy_probe(vp_dev);if (rc)goto err_probe;}

引出来两个函数:virtio_pci_legacy_probe和virtio_pci_modern_probe。本回就来对它们进行解析。当然,由于legacy已成过去,因此重点围绕virtio_pci_modern_probe函数进行解析,捎带手地也讲一下virtio_pci_legacy_probe()。为了便于理解,再次贴出两个函数的源码:

  • virtio_pci_legacy_probe

virtio_pci_legacy_probe函数在Linux内核源码/drivers/virtio/virtio_pci_legacy.c中,代码如下:

/* the PCI probing function */
int virtio_pci_legacy_probe(struct virtio_pci_device *vp_dev)
{struct virtio_pci_legacy_device *ldev = &vp_dev->ldev;struct pci_dev *pci_dev = vp_dev->pci_dev;int rc;ldev->pci_dev = pci_dev;rc = vp_legacy_probe(ldev);if (rc)return rc;vp_dev->isr = ldev->isr;vp_dev->vdev.id = ldev->id;vp_dev->vdev.config = &virtio_pci_config_ops;vp_dev->config_vector = vp_config_vector;vp_dev->setup_vq = setup_vq;vp_dev->del_vq = del_vq;return 0;
}
  • virtio_pci_modern_probe

virtio_pci_modern_probe函数在Linux内核源码/drivers/virtio/virtio_pci_modern.c中,代码如下:

/* the PCI probing function */
int virtio_pci_modern_probe(struct virtio_pci_device *vp_dev)
{struct virtio_pci_modern_device *mdev = &vp_dev->mdev;struct pci_dev *pci_dev = vp_dev->pci_dev;int err;mdev->pci_dev = pci_dev;err = vp_modern_probe(mdev);if (err)return err;if (mdev->device)vp_dev->vdev.config = &virtio_pci_config_ops;elsevp_dev->vdev.config = &virtio_pci_config_nodev_ops;vp_dev->config_vector = vp_config_vector;vp_dev->setup_vq = setup_vq;vp_dev->del_vq = del_vq;vp_dev->isr = mdev->isr;vp_dev->vdev.id = mdev->id;return 0;
}

virtio_pci_modern_probe函数中最主要的是调用了vp_modern_probe函数,其在Linux内核源码/drivers/virtio/virtio_pci_modern_dev.c中,代码如下:

/** vp_modern_probe: probe the modern virtio pci device, note that the* caller is required to enable PCI device before calling this function.* @mdev: the modern virtio-pci device** Return 0 on succeed otherwise fail*/
int vp_modern_probe(struct virtio_pci_modern_device *mdev)
{struct pci_dev *pci_dev = mdev->pci_dev;int err, common, isr, notify, device;u32 notify_length;u32 notify_offset;check_offsets();/* We only own devices >= 0x1000 and <= 0x107f: leave the rest. */if (pci_dev->device < 0x1000 || pci_dev->device > 0x107f)return -ENODEV;if (pci_dev->device < 0x1040) {/* Transitional devices: use the PCI subsystem device id as* virtio device id, same as legacy driver always did.*/mdev->id.device = pci_dev->subsystem_device;} else {/* Modern devices: simply use PCI device id, but start from 0x1040. */mdev->id.device = pci_dev->device - 0x1040;}mdev->id.vendor = pci_dev->subsystem_vendor;/* check for a common config: if not, use legacy mode (bar 0). */common = virtio_pci_find_capability(pci_dev, VIRTIO_PCI_CAP_COMMON_CFG,IORESOURCE_IO | IORESOURCE_MEM,&mdev->modern_bars);if (!common) {dev_info(&pci_dev->dev,"virtio_pci: leaving for legacy driver\n");return -ENODEV;}/* If common is there, these should be too... */isr = virtio_pci_find_capability(pci_dev, VIRTIO_PCI_CAP_ISR_CFG,IORESOURCE_IO | IORESOURCE_MEM,&mdev->modern_bars);notify = virtio_pci_find_capability(pci_dev, VIRTIO_PCI_CAP_NOTIFY_CFG,IORESOURCE_IO | IORESOURCE_MEM,&mdev->modern_bars);if (!isr || !notify) {dev_err(&pci_dev->dev,"virtio_pci: missing capabilities %i/%i/%i\n",common, isr, notify);return -EINVAL;}err = dma_set_mask_and_coherent(&pci_dev->dev, DMA_BIT_MASK(64));if (err)err = dma_set_mask_and_coherent(&pci_dev->dev,DMA_BIT_MASK(32));if (err)dev_warn(&pci_dev->dev, "Failed to enable 64-bit or 32-bit DMA.  Trying to continue, but this might not work.\n");/* Device capability is only mandatory for devices that have* device-specific configuration.*/device = virtio_pci_find_capability(pci_dev, VIRTIO_PCI_CAP_DEVICE_CFG,IORESOURCE_IO | IORESOURCE_MEM,&mdev->modern_bars);err = pci_request_selected_regions(pci_dev, mdev->modern_bars,"virtio-pci-modern");if (err)return err;err = -EINVAL;mdev->common = vp_modern_map_capability(mdev, common,sizeof(struct virtio_pci_common_cfg), 4,0, sizeof(struct virtio_pci_common_cfg),NULL, NULL);if (!mdev->common)goto err_map_common;mdev->isr = vp_modern_map_capability(mdev, isr, sizeof(u8), 1,0, 1,NULL, NULL);if (!mdev->isr)goto err_map_isr;/* Read notify_off_multiplier from config space. */pci_read_config_dword(pci_dev,notify + offsetof(struct virtio_pci_notify_cap,notify_off_multiplier),&mdev->notify_offset_multiplier);/* Read notify length and offset from config space. */pci_read_config_dword(pci_dev,notify + offsetof(struct virtio_pci_notify_cap,cap.length),&notify_length);pci_read_config_dword(pci_dev,notify + offsetof(struct virtio_pci_notify_cap,cap.offset),&notify_offset);/* We don't know how many VQs we'll map, ahead of the time.* If notify length is small, map it all now.* Otherwise, map each VQ individually later.*/if ((u64)notify_length + (notify_offset % PAGE_SIZE) <= PAGE_SIZE) {mdev->notify_base = vp_modern_map_capability(mdev, notify,2, 2,0, notify_length,&mdev->notify_len,&mdev->notify_pa);if (!mdev->notify_base)goto err_map_notify;} else {mdev->notify_map_cap = notify;}/* Again, we don't know how much we should map, but PAGE_SIZE* is more than enough for all existing devices.*/if (device) {mdev->device = vp_modern_map_capability(mdev, device, 0, 4,0, PAGE_SIZE,&mdev->device_len,NULL);if (!mdev->device)goto err_map_device;}return 0;err_map_device:if (mdev->notify_base)pci_iounmap(pci_dev, mdev->notify_base);
err_map_notify:pci_iounmap(pci_dev, mdev->isr);
err_map_isr:pci_iounmap(pci_dev, mdev->common);
err_map_common:pci_release_selected_regions(pci_dev, mdev->modern_bars);return err;
}
EXPORT_SYMBOL_GPL(vp_modern_probe);

实际上在老版本KVM即Linux内核代码中,vp_modern_probe函数中的内容绝大多数是直接放在virtio_pci_modern_probe函数中的,后来才单独封了这样一个函数。

(1)vp_modern_probe首先设置了virtio设备的verdor ID和device ID。代码片段如下:

    /* We only own devices >= 0x1000 and <= 0x107f: leave the rest. */if (pci_dev->device < 0x1000 || pci_dev->device > 0x107f)return -ENODEV;if (pci_dev->device < 0x1040) {/* Transitional devices: use the PCI subsystem device id as* virtio device id, same as legacy driver always did.*/mdev->id.device = pci_dev->subsystem_device;} else {/* Modern devices: simply use PCI device id, but start from 0x1040. */mdev->id.device = pci_dev->device - 0x1040;}mdev->id.vendor = pci_dev->subsystem_vendor;

值得注意的是,virtio PCI代理设备的device iD就是前文书(参见QEMU源码全解析 —— virtio(14))在讲virtio_pci_device_plugged函数(QEMU源码中)时设置的PCI_DEVICE_ID_VIRTIO_10_BASE+VIRTIO_ID_BALLOON,即0x1040+5。

所以,这里virtio设备的device ID(mdev->id.device)就是0x1040+5-0x1040=5,也就代表了VIRTIO_ID_BALLOON。

(2)接下来,调用多次virtio_pci_find_capability函数来发现virtio PCI代理设备的pci capability。代码片段如下:

/* check for a common config: if not, use legacy mode (bar 0). */common = virtio_pci_find_capability(pci_dev, VIRTIO_PCI_CAP_COMMON_CFG,IORESOURCE_IO | IORESOURCE_MEM,&mdev->modern_bars);if (!common) {dev_info(&pci_dev->dev,"virtio_pci: leaving for legacy driver\n");return -ENODEV;}/* If common is there, these should be too... */isr = virtio_pci_find_capability(pci_dev, VIRTIO_PCI_CAP_ISR_CFG,IORESOURCE_IO | IORESOURCE_MEM,&mdev->modern_bars);notify = virtio_pci_find_capability(pci_dev, VIRTIO_PCI_CAP_NOTIFY_CFG,IORESOURCE_IO | IORESOURCE_MEM,&mdev->modern_bars);if (!isr || !notify) {dev_err(&pci_dev->dev,"virtio_pci: missing capabilities %i/%i/%i\n",common, isr, notify);return -EINVAL;}err = dma_set_mask_and_coherent(&pci_dev->dev, DMA_BIT_MASK(64));if (err)err = dma_set_mask_and_coherent(&pci_dev->dev,DMA_BIT_MASK(32));if (err)dev_warn(&pci_dev->dev, "Failed to enable 64-bit or 32-bit DMA.  Trying to continue, but this might not work.\n");/* Device capability is only mandatory for devices that have* device-specific configuration.*/device = virtio_pci_find_capability(pci_dev, VIRTIO_PCI_CAP_DEVICE_CFG,IORESOURCE_IO | IORESOURCE_MEM,&mdev->modern_bars);

这也是在(QEMU源码)virtio_pci_device_plugged函数中写入到virtio PCI代理设备的配置空间中的,参见QEMU源码全解析 —— virtio(14)和QEMU源码全解析 —— virtio(15)。

(3)virtio_pci_find_capability函数找到所属的PCI BAR,然后写入到virt_pci_device的modern_bars成员中。代码片段如下:

    /* Device capability is only mandatory for devices that have* device-specific configuration.*/device = virtio_pci_find_capability(pci_dev, VIRTIO_PCI_CAP_DEVICE_CFG,IORESOURCE_IO | IORESOURCE_MEM,&mdev->modern_bars);

从(QEMU源码)virtio_pci_realize函数中可以知道这个modern_bars是1<<4,如下图所示:

(4)接着,pci_request_selected_regions函数就将virtio PCI代理设备的BAR地址空间保留出来了。代码片段如下:

    err = pci_request_selected_regions(pci_dev, mdev->modern_bars,"virtio-pci-modern");if (err)return err;

(5)调用vp_modern_map_capability函数将对应的capability在PCI代理设备中的BAR空间映射到内核地址空间。代码片段如下:

    err = -EINVAL;mdev->common = vp_modern_map_capability(mdev, common,sizeof(struct virtio_pci_common_cfg), 4,0, sizeof(struct virtio_pci_common_cfg),NULL, NULL);if (!mdev->common)goto err_map_common;mdev->isr = vp_modern_map_capability(mdev, isr, sizeof(u8), 1,0, 1,NULL, NULL);if (!mdev->isr)goto err_map_isr;/* Read notify_off_multiplier from config space. */pci_read_config_dword(pci_dev,notify + offsetof(struct virtio_pci_notify_cap,notify_off_multiplier),&mdev->notify_offset_multiplier);/* Read notify length and offset from config space. */pci_read_config_dword(pci_dev,notify + offsetof(struct virtio_pci_notify_cap,cap.length),&notify_length);pci_read_config_dword(pci_dev,notify + offsetof(struct virtio_pci_notify_cap,cap.offset),&notify_offset);/* We don't know how many VQs we'll map, ahead of the time.* If notify length is small, map it all now.* Otherwise, map each VQ individually later.*/if ((u64)notify_length + (notify_offset % PAGE_SIZE) <= PAGE_SIZE) {mdev->notify_base = vp_modern_map_capability(mdev, notify,2, 2,0, notify_length,&mdev->notify_len,&mdev->notify_pa);if (!mdev->notify_base)goto err_map_notify;} else {mdev->notify_map_cap = notify;}/* Again, we don't know how much we should map, but PAGE_SIZE* is more than enough for all existing devices.*/if (device) {mdev->device = vp_modern_map_capability(mdev, device, 0, 4,0, PAGE_SIZE,&mdev->device_len,NULL);if (!mdev->device)goto err_map_device;}

如mp_dev(struct virtio_pci_modern_device *mdev = &vp_dev->mdev;)的common成员映射了virtio_pci_common_cfg的数据到内核中。这样,后续就可以直接通过这个内存地址空间来访问common这一capability了,其它的capability(isr、notify、device)也与此类似。

vp_modern_map_capability函数在Linux内核源码/drivers/virtio/virtio_pci_modern_dev.c中,代码如下:

/** vp_modern_map_capability - map a part of virtio pci capability* @mdev: the modern virtio-pci device* @off: offset of the capability* @minlen: minimal length of the capability* @align: align requirement* @start: start from the capability* @size: map size* @len: the length that is actually mapped* @pa: physical address of the capability** Returns the io address of for the part of the capability*/
static void __iomem *
vp_modern_map_capability(struct virtio_pci_modern_device *mdev, int off,size_t minlen, u32 align, u32 start, u32 size,size_t *len, resource_size_t *pa)
{struct pci_dev *dev = mdev->pci_dev;u8 bar;u32 offset, length;void __iomem *p;pci_read_config_byte(dev, off + offsetof(struct virtio_pci_cap,bar),&bar);pci_read_config_dword(dev, off + offsetof(struct virtio_pci_cap, offset),&offset);pci_read_config_dword(dev, off + offsetof(struct virtio_pci_cap, length),&length);/* Check if the BAR may have changed since we requested the region. */if (bar >= PCI_STD_NUM_BARS || !(mdev->modern_bars & (1 << bar))) {dev_err(&dev->dev,"virtio_pci: bar unexpectedly changed to %u\n", bar);return NULL;}if (length <= start) {dev_err(&dev->dev,"virtio_pci: bad capability len %u (>%u expected)\n",length, start);return NULL;}if (length - start < minlen) {dev_err(&dev->dev,"virtio_pci: bad capability len %u (>=%zu expected)\n",length, minlen);return NULL;}length -= start;if (start + offset < offset) {dev_err(&dev->dev,"virtio_pci: map wrap-around %u+%u\n",start, offset);return NULL;}offset += start;if (offset & (align - 1)) {dev_err(&dev->dev,"virtio_pci: offset %u not aligned to %u\n",offset, align);return NULL;}if (length > size)length = size;if (len)*len = length;if (minlen + offset < minlen ||minlen + offset > pci_resource_len(dev, bar)) {dev_err(&dev->dev,"virtio_pci: map virtio %zu@%u ""out of range on bar %i length %lu\n",minlen, offset,bar, (unsigned long)pci_resource_len(dev, bar));return NULL;}p = pci_iomap_range(dev, bar, offset, length);if (!p)dev_err(&dev->dev,"virtio_pci: unable to map virtio %u@%u on bar %i\n",length, offset, bar);else if (pa)*pa = pci_resource_start(dev, bar) + offset;return p;
}

这样实际上就将virtio PCI代理设备的BAR映射到虚拟机内核地址空间了,后续直接访问这些地址即可实现对virtio PCI代理设备的配置和控制。

回到virtio_pci_modern_probe函数。

/* the PCI probing function */
int virtio_pci_modern_probe(struct virtio_pci_device *vp_dev)
{struct virtio_pci_modern_device *mdev = &vp_dev->mdev;struct pci_dev *pci_dev = vp_dev->pci_dev;int err;mdev->pci_dev = pci_dev;err = vp_modern_probe(mdev);if (err)return err;if (mdev->device)vp_dev->vdev.config = &virtio_pci_config_ops;elsevp_dev->vdev.config = &virtio_pci_config_nodev_ops;vp_dev->config_vector = vp_config_vector;vp_dev->setup_vq = setup_vq;vp_dev->del_vq = del_vq;vp_dev->isr = mdev->isr;vp_dev->vdev.id = mdev->id;return 0;
}

在调用完vp_modern_probe函数之后,virtio_pci_modern_probe函数接着设置virtio_pci_device中virtio_device的成员vdev的config成员。如果有device这一capability,则设置为virtio_pci_config_ops,否则设置为virtio_pci_config_nodev_ops。

之后设置vpdev即struct virtio_pci_device的几个回调函数:config_vector与MSI中断有关,设置为vp_config_vector;setup_vq用来配置virtio设备virt queue,设置为setup_vq;del_vq用来删除virt queue,设置为del_vq。

至此,virtio_pci_modern_probe函数就解析完了。

欲知后事如何,且看下回分解。

这篇关于QEMU源码全解析 —— virtio(19)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/519787

相关文章

C语言中自动与强制转换全解析

《C语言中自动与强制转换全解析》在编写C程序时,类型转换是确保数据正确性和一致性的关键环节,无论是隐式转换还是显式转换,都各有特点和应用场景,本文将详细探讨C语言中的类型转换机制,帮助您更好地理解并在... 目录类型转换的重要性自动类型转换(隐式转换)强制类型转换(显式转换)常见错误与注意事项总结与建议类型

MySQL 缓存机制与架构解析(最新推荐)

《MySQL缓存机制与架构解析(最新推荐)》本文详细介绍了MySQL的缓存机制和整体架构,包括一级缓存(InnoDBBufferPool)和二级缓存(QueryCache),文章还探讨了SQL... 目录一、mysql缓存机制概述二、MySQL整体架构三、SQL查询执行全流程四、MySQL 8.0为何移除查

在Rust中要用Struct和Enum组织数据的原因解析

《在Rust中要用Struct和Enum组织数据的原因解析》在Rust中,Struct和Enum是组织数据的核心工具,Struct用于将相关字段封装为单一实体,便于管理和扩展,Enum用于明确定义所有... 目录为什么在Rust中要用Struct和Enum组织数据?一、使用struct组织数据:将相关字段绑

使用Java实现一个解析CURL脚本小工具

《使用Java实现一个解析CURL脚本小工具》文章介绍了如何使用Java实现一个解析CURL脚本的工具,该工具可以将CURL脚本中的Header解析为KVMap结构,获取URL路径、请求类型,解析UR... 目录使用示例实现原理具体实现CurlParserUtilCurlEntityICurlHandler

深入解析Spring TransactionTemplate 高级用法(示例代码)

《深入解析SpringTransactionTemplate高级用法(示例代码)》TransactionTemplate是Spring框架中一个强大的工具,它允许开发者以编程方式控制事务,通过... 目录1. TransactionTemplate 的核心概念2. 核心接口和类3. TransactionT

数据库使用之union、union all、各种join的用法区别解析

《数据库使用之union、unionall、各种join的用法区别解析》:本文主要介绍SQL中的Union和UnionAll的区别,包括去重与否以及使用时的注意事项,还详细解释了Join关键字,... 目录一、Union 和Union All1、区别:2、注意点:3、具体举例二、Join关键字的区别&php

Spring IOC控制反转的实现解析

《SpringIOC控制反转的实现解析》:本文主要介绍SpringIOC控制反转的实现,IOC是Spring的核心思想之一,它通过将对象的创建、依赖注入和生命周期管理交给容器来实现解耦,使开发者... 目录1. IOC的基本概念1.1 什么是IOC1.2 IOC与DI的关系2. IOC的设计目标3. IOC

java中的HashSet与 == 和 equals的区别示例解析

《java中的HashSet与==和equals的区别示例解析》HashSet是Java中基于哈希表实现的集合类,特点包括:元素唯一、无序和可包含null,本文给大家介绍java中的HashSe... 目录什么是HashSetHashSet 的主要特点是HashSet 的常用方法hasSet存储为啥是无序的

Go中sync.Once源码的深度讲解

《Go中sync.Once源码的深度讲解》sync.Once是Go语言标准库中的一个同步原语,用于确保某个操作只执行一次,本文将从源码出发为大家详细介绍一下sync.Once的具体使用,x希望对大家有... 目录概念简单示例源码解读总结概念sync.Once是Go语言标准库中的一个同步原语,用于确保某个操

Linux中shell解析脚本的通配符、元字符、转义符说明

《Linux中shell解析脚本的通配符、元字符、转义符说明》:本文主要介绍shell通配符、元字符、转义符以及shell解析脚本的过程,通配符用于路径扩展,元字符用于多命令分割,转义符用于将特殊... 目录一、linux shell通配符(wildcard)二、shell元字符(特殊字符 Meta)三、s