QEMU源码全解析 —— virtio(19)

2023-12-21 11:20
文章标签 源码 解析 19 qemu virtio

本文主要是介绍QEMU源码全解析 —— virtio(19),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

接前一篇文章:

上回书继续讲解virtio_pci_driver的probe回调函数virtio_pci_probe(),在讲到第5段代码的时候,

    if (force_legacy) {rc = virtio_pci_legacy_probe(vp_dev);/* Also try modern mode if we can't map BAR0 (no IO space). */if (rc == -ENODEV || rc == -ENOMEM)rc = virtio_pci_modern_probe(vp_dev);if (rc)goto err_probe;} else {rc = virtio_pci_modern_probe(vp_dev);if (rc == -ENODEV)rc = virtio_pci_legacy_probe(vp_dev);if (rc)goto err_probe;}

引出来两个函数:virtio_pci_legacy_probe和virtio_pci_modern_probe。本回就来对它们进行解析。当然,由于legacy已成过去,因此重点围绕virtio_pci_modern_probe函数进行解析,捎带手地也讲一下virtio_pci_legacy_probe()。为了便于理解,再次贴出两个函数的源码:

  • virtio_pci_legacy_probe

virtio_pci_legacy_probe函数在Linux内核源码/drivers/virtio/virtio_pci_legacy.c中,代码如下:

/* the PCI probing function */
int virtio_pci_legacy_probe(struct virtio_pci_device *vp_dev)
{struct virtio_pci_legacy_device *ldev = &vp_dev->ldev;struct pci_dev *pci_dev = vp_dev->pci_dev;int rc;ldev->pci_dev = pci_dev;rc = vp_legacy_probe(ldev);if (rc)return rc;vp_dev->isr = ldev->isr;vp_dev->vdev.id = ldev->id;vp_dev->vdev.config = &virtio_pci_config_ops;vp_dev->config_vector = vp_config_vector;vp_dev->setup_vq = setup_vq;vp_dev->del_vq = del_vq;return 0;
}
  • virtio_pci_modern_probe

virtio_pci_modern_probe函数在Linux内核源码/drivers/virtio/virtio_pci_modern.c中,代码如下:

/* the PCI probing function */
int virtio_pci_modern_probe(struct virtio_pci_device *vp_dev)
{struct virtio_pci_modern_device *mdev = &vp_dev->mdev;struct pci_dev *pci_dev = vp_dev->pci_dev;int err;mdev->pci_dev = pci_dev;err = vp_modern_probe(mdev);if (err)return err;if (mdev->device)vp_dev->vdev.config = &virtio_pci_config_ops;elsevp_dev->vdev.config = &virtio_pci_config_nodev_ops;vp_dev->config_vector = vp_config_vector;vp_dev->setup_vq = setup_vq;vp_dev->del_vq = del_vq;vp_dev->isr = mdev->isr;vp_dev->vdev.id = mdev->id;return 0;
}

virtio_pci_modern_probe函数中最主要的是调用了vp_modern_probe函数,其在Linux内核源码/drivers/virtio/virtio_pci_modern_dev.c中,代码如下:

/** vp_modern_probe: probe the modern virtio pci device, note that the* caller is required to enable PCI device before calling this function.* @mdev: the modern virtio-pci device** Return 0 on succeed otherwise fail*/
int vp_modern_probe(struct virtio_pci_modern_device *mdev)
{struct pci_dev *pci_dev = mdev->pci_dev;int err, common, isr, notify, device;u32 notify_length;u32 notify_offset;check_offsets();/* We only own devices >= 0x1000 and <= 0x107f: leave the rest. */if (pci_dev->device < 0x1000 || pci_dev->device > 0x107f)return -ENODEV;if (pci_dev->device < 0x1040) {/* Transitional devices: use the PCI subsystem device id as* virtio device id, same as legacy driver always did.*/mdev->id.device = pci_dev->subsystem_device;} else {/* Modern devices: simply use PCI device id, but start from 0x1040. */mdev->id.device = pci_dev->device - 0x1040;}mdev->id.vendor = pci_dev->subsystem_vendor;/* check for a common config: if not, use legacy mode (bar 0). */common = virtio_pci_find_capability(pci_dev, VIRTIO_PCI_CAP_COMMON_CFG,IORESOURCE_IO | IORESOURCE_MEM,&mdev->modern_bars);if (!common) {dev_info(&pci_dev->dev,"virtio_pci: leaving for legacy driver\n");return -ENODEV;}/* If common is there, these should be too... */isr = virtio_pci_find_capability(pci_dev, VIRTIO_PCI_CAP_ISR_CFG,IORESOURCE_IO | IORESOURCE_MEM,&mdev->modern_bars);notify = virtio_pci_find_capability(pci_dev, VIRTIO_PCI_CAP_NOTIFY_CFG,IORESOURCE_IO | IORESOURCE_MEM,&mdev->modern_bars);if (!isr || !notify) {dev_err(&pci_dev->dev,"virtio_pci: missing capabilities %i/%i/%i\n",common, isr, notify);return -EINVAL;}err = dma_set_mask_and_coherent(&pci_dev->dev, DMA_BIT_MASK(64));if (err)err = dma_set_mask_and_coherent(&pci_dev->dev,DMA_BIT_MASK(32));if (err)dev_warn(&pci_dev->dev, "Failed to enable 64-bit or 32-bit DMA.  Trying to continue, but this might not work.\n");/* Device capability is only mandatory for devices that have* device-specific configuration.*/device = virtio_pci_find_capability(pci_dev, VIRTIO_PCI_CAP_DEVICE_CFG,IORESOURCE_IO | IORESOURCE_MEM,&mdev->modern_bars);err = pci_request_selected_regions(pci_dev, mdev->modern_bars,"virtio-pci-modern");if (err)return err;err = -EINVAL;mdev->common = vp_modern_map_capability(mdev, common,sizeof(struct virtio_pci_common_cfg), 4,0, sizeof(struct virtio_pci_common_cfg),NULL, NULL);if (!mdev->common)goto err_map_common;mdev->isr = vp_modern_map_capability(mdev, isr, sizeof(u8), 1,0, 1,NULL, NULL);if (!mdev->isr)goto err_map_isr;/* Read notify_off_multiplier from config space. */pci_read_config_dword(pci_dev,notify + offsetof(struct virtio_pci_notify_cap,notify_off_multiplier),&mdev->notify_offset_multiplier);/* Read notify length and offset from config space. */pci_read_config_dword(pci_dev,notify + offsetof(struct virtio_pci_notify_cap,cap.length),&notify_length);pci_read_config_dword(pci_dev,notify + offsetof(struct virtio_pci_notify_cap,cap.offset),&notify_offset);/* We don't know how many VQs we'll map, ahead of the time.* If notify length is small, map it all now.* Otherwise, map each VQ individually later.*/if ((u64)notify_length + (notify_offset % PAGE_SIZE) <= PAGE_SIZE) {mdev->notify_base = vp_modern_map_capability(mdev, notify,2, 2,0, notify_length,&mdev->notify_len,&mdev->notify_pa);if (!mdev->notify_base)goto err_map_notify;} else {mdev->notify_map_cap = notify;}/* Again, we don't know how much we should map, but PAGE_SIZE* is more than enough for all existing devices.*/if (device) {mdev->device = vp_modern_map_capability(mdev, device, 0, 4,0, PAGE_SIZE,&mdev->device_len,NULL);if (!mdev->device)goto err_map_device;}return 0;err_map_device:if (mdev->notify_base)pci_iounmap(pci_dev, mdev->notify_base);
err_map_notify:pci_iounmap(pci_dev, mdev->isr);
err_map_isr:pci_iounmap(pci_dev, mdev->common);
err_map_common:pci_release_selected_regions(pci_dev, mdev->modern_bars);return err;
}
EXPORT_SYMBOL_GPL(vp_modern_probe);

实际上在老版本KVM即Linux内核代码中,vp_modern_probe函数中的内容绝大多数是直接放在virtio_pci_modern_probe函数中的,后来才单独封了这样一个函数。

(1)vp_modern_probe首先设置了virtio设备的verdor ID和device ID。代码片段如下:

    /* We only own devices >= 0x1000 and <= 0x107f: leave the rest. */if (pci_dev->device < 0x1000 || pci_dev->device > 0x107f)return -ENODEV;if (pci_dev->device < 0x1040) {/* Transitional devices: use the PCI subsystem device id as* virtio device id, same as legacy driver always did.*/mdev->id.device = pci_dev->subsystem_device;} else {/* Modern devices: simply use PCI device id, but start from 0x1040. */mdev->id.device = pci_dev->device - 0x1040;}mdev->id.vendor = pci_dev->subsystem_vendor;

值得注意的是,virtio PCI代理设备的device iD就是前文书(参见QEMU源码全解析 —— virtio(14))在讲virtio_pci_device_plugged函数(QEMU源码中)时设置的PCI_DEVICE_ID_VIRTIO_10_BASE+VIRTIO_ID_BALLOON,即0x1040+5。

所以,这里virtio设备的device ID(mdev->id.device)就是0x1040+5-0x1040=5,也就代表了VIRTIO_ID_BALLOON。

(2)接下来,调用多次virtio_pci_find_capability函数来发现virtio PCI代理设备的pci capability。代码片段如下:

/* check for a common config: if not, use legacy mode (bar 0). */common = virtio_pci_find_capability(pci_dev, VIRTIO_PCI_CAP_COMMON_CFG,IORESOURCE_IO | IORESOURCE_MEM,&mdev->modern_bars);if (!common) {dev_info(&pci_dev->dev,"virtio_pci: leaving for legacy driver\n");return -ENODEV;}/* If common is there, these should be too... */isr = virtio_pci_find_capability(pci_dev, VIRTIO_PCI_CAP_ISR_CFG,IORESOURCE_IO | IORESOURCE_MEM,&mdev->modern_bars);notify = virtio_pci_find_capability(pci_dev, VIRTIO_PCI_CAP_NOTIFY_CFG,IORESOURCE_IO | IORESOURCE_MEM,&mdev->modern_bars);if (!isr || !notify) {dev_err(&pci_dev->dev,"virtio_pci: missing capabilities %i/%i/%i\n",common, isr, notify);return -EINVAL;}err = dma_set_mask_and_coherent(&pci_dev->dev, DMA_BIT_MASK(64));if (err)err = dma_set_mask_and_coherent(&pci_dev->dev,DMA_BIT_MASK(32));if (err)dev_warn(&pci_dev->dev, "Failed to enable 64-bit or 32-bit DMA.  Trying to continue, but this might not work.\n");/* Device capability is only mandatory for devices that have* device-specific configuration.*/device = virtio_pci_find_capability(pci_dev, VIRTIO_PCI_CAP_DEVICE_CFG,IORESOURCE_IO | IORESOURCE_MEM,&mdev->modern_bars);

这也是在(QEMU源码)virtio_pci_device_plugged函数中写入到virtio PCI代理设备的配置空间中的,参见QEMU源码全解析 —— virtio(14)和QEMU源码全解析 —— virtio(15)。

(3)virtio_pci_find_capability函数找到所属的PCI BAR,然后写入到virt_pci_device的modern_bars成员中。代码片段如下:

    /* Device capability is only mandatory for devices that have* device-specific configuration.*/device = virtio_pci_find_capability(pci_dev, VIRTIO_PCI_CAP_DEVICE_CFG,IORESOURCE_IO | IORESOURCE_MEM,&mdev->modern_bars);

从(QEMU源码)virtio_pci_realize函数中可以知道这个modern_bars是1<<4,如下图所示:

(4)接着,pci_request_selected_regions函数就将virtio PCI代理设备的BAR地址空间保留出来了。代码片段如下:

    err = pci_request_selected_regions(pci_dev, mdev->modern_bars,"virtio-pci-modern");if (err)return err;

(5)调用vp_modern_map_capability函数将对应的capability在PCI代理设备中的BAR空间映射到内核地址空间。代码片段如下:

    err = -EINVAL;mdev->common = vp_modern_map_capability(mdev, common,sizeof(struct virtio_pci_common_cfg), 4,0, sizeof(struct virtio_pci_common_cfg),NULL, NULL);if (!mdev->common)goto err_map_common;mdev->isr = vp_modern_map_capability(mdev, isr, sizeof(u8), 1,0, 1,NULL, NULL);if (!mdev->isr)goto err_map_isr;/* Read notify_off_multiplier from config space. */pci_read_config_dword(pci_dev,notify + offsetof(struct virtio_pci_notify_cap,notify_off_multiplier),&mdev->notify_offset_multiplier);/* Read notify length and offset from config space. */pci_read_config_dword(pci_dev,notify + offsetof(struct virtio_pci_notify_cap,cap.length),&notify_length);pci_read_config_dword(pci_dev,notify + offsetof(struct virtio_pci_notify_cap,cap.offset),&notify_offset);/* We don't know how many VQs we'll map, ahead of the time.* If notify length is small, map it all now.* Otherwise, map each VQ individually later.*/if ((u64)notify_length + (notify_offset % PAGE_SIZE) <= PAGE_SIZE) {mdev->notify_base = vp_modern_map_capability(mdev, notify,2, 2,0, notify_length,&mdev->notify_len,&mdev->notify_pa);if (!mdev->notify_base)goto err_map_notify;} else {mdev->notify_map_cap = notify;}/* Again, we don't know how much we should map, but PAGE_SIZE* is more than enough for all existing devices.*/if (device) {mdev->device = vp_modern_map_capability(mdev, device, 0, 4,0, PAGE_SIZE,&mdev->device_len,NULL);if (!mdev->device)goto err_map_device;}

如mp_dev(struct virtio_pci_modern_device *mdev = &vp_dev->mdev;)的common成员映射了virtio_pci_common_cfg的数据到内核中。这样,后续就可以直接通过这个内存地址空间来访问common这一capability了,其它的capability(isr、notify、device)也与此类似。

vp_modern_map_capability函数在Linux内核源码/drivers/virtio/virtio_pci_modern_dev.c中,代码如下:

/** vp_modern_map_capability - map a part of virtio pci capability* @mdev: the modern virtio-pci device* @off: offset of the capability* @minlen: minimal length of the capability* @align: align requirement* @start: start from the capability* @size: map size* @len: the length that is actually mapped* @pa: physical address of the capability** Returns the io address of for the part of the capability*/
static void __iomem *
vp_modern_map_capability(struct virtio_pci_modern_device *mdev, int off,size_t minlen, u32 align, u32 start, u32 size,size_t *len, resource_size_t *pa)
{struct pci_dev *dev = mdev->pci_dev;u8 bar;u32 offset, length;void __iomem *p;pci_read_config_byte(dev, off + offsetof(struct virtio_pci_cap,bar),&bar);pci_read_config_dword(dev, off + offsetof(struct virtio_pci_cap, offset),&offset);pci_read_config_dword(dev, off + offsetof(struct virtio_pci_cap, length),&length);/* Check if the BAR may have changed since we requested the region. */if (bar >= PCI_STD_NUM_BARS || !(mdev->modern_bars & (1 << bar))) {dev_err(&dev->dev,"virtio_pci: bar unexpectedly changed to %u\n", bar);return NULL;}if (length <= start) {dev_err(&dev->dev,"virtio_pci: bad capability len %u (>%u expected)\n",length, start);return NULL;}if (length - start < minlen) {dev_err(&dev->dev,"virtio_pci: bad capability len %u (>=%zu expected)\n",length, minlen);return NULL;}length -= start;if (start + offset < offset) {dev_err(&dev->dev,"virtio_pci: map wrap-around %u+%u\n",start, offset);return NULL;}offset += start;if (offset & (align - 1)) {dev_err(&dev->dev,"virtio_pci: offset %u not aligned to %u\n",offset, align);return NULL;}if (length > size)length = size;if (len)*len = length;if (minlen + offset < minlen ||minlen + offset > pci_resource_len(dev, bar)) {dev_err(&dev->dev,"virtio_pci: map virtio %zu@%u ""out of range on bar %i length %lu\n",minlen, offset,bar, (unsigned long)pci_resource_len(dev, bar));return NULL;}p = pci_iomap_range(dev, bar, offset, length);if (!p)dev_err(&dev->dev,"virtio_pci: unable to map virtio %u@%u on bar %i\n",length, offset, bar);else if (pa)*pa = pci_resource_start(dev, bar) + offset;return p;
}

这样实际上就将virtio PCI代理设备的BAR映射到虚拟机内核地址空间了,后续直接访问这些地址即可实现对virtio PCI代理设备的配置和控制。

回到virtio_pci_modern_probe函数。

/* the PCI probing function */
int virtio_pci_modern_probe(struct virtio_pci_device *vp_dev)
{struct virtio_pci_modern_device *mdev = &vp_dev->mdev;struct pci_dev *pci_dev = vp_dev->pci_dev;int err;mdev->pci_dev = pci_dev;err = vp_modern_probe(mdev);if (err)return err;if (mdev->device)vp_dev->vdev.config = &virtio_pci_config_ops;elsevp_dev->vdev.config = &virtio_pci_config_nodev_ops;vp_dev->config_vector = vp_config_vector;vp_dev->setup_vq = setup_vq;vp_dev->del_vq = del_vq;vp_dev->isr = mdev->isr;vp_dev->vdev.id = mdev->id;return 0;
}

在调用完vp_modern_probe函数之后,virtio_pci_modern_probe函数接着设置virtio_pci_device中virtio_device的成员vdev的config成员。如果有device这一capability,则设置为virtio_pci_config_ops,否则设置为virtio_pci_config_nodev_ops。

之后设置vpdev即struct virtio_pci_device的几个回调函数:config_vector与MSI中断有关,设置为vp_config_vector;setup_vq用来配置virtio设备virt queue,设置为setup_vq;del_vq用来删除virt queue,设置为del_vq。

至此,virtio_pci_modern_probe函数就解析完了。

欲知后事如何,且看下回分解。

这篇关于QEMU源码全解析 —— virtio(19)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/519787

相关文章

Python 中的异步与同步深度解析(实践记录)

《Python中的异步与同步深度解析(实践记录)》在Python编程世界里,异步和同步的概念是理解程序执行流程和性能优化的关键,这篇文章将带你深入了解它们的差异,以及阻塞和非阻塞的特性,同时通过实际... 目录python中的异步与同步:深度解析与实践异步与同步的定义异步同步阻塞与非阻塞的概念阻塞非阻塞同步

Redis中高并发读写性能的深度解析与优化

《Redis中高并发读写性能的深度解析与优化》Redis作为一款高性能的内存数据库,广泛应用于缓存、消息队列、实时统计等场景,本文将深入探讨Redis的读写并发能力,感兴趣的小伙伴可以了解下... 目录引言一、Redis 并发能力概述1.1 Redis 的读写性能1.2 影响 Redis 并发能力的因素二、

Spring MVC使用视图解析的问题解读

《SpringMVC使用视图解析的问题解读》:本文主要介绍SpringMVC使用视图解析的问题解读,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Spring MVC使用视图解析1. 会使用视图解析的情况2. 不会使用视图解析的情况总结Spring MVC使用视图

利用Python和C++解析gltf文件的示例详解

《利用Python和C++解析gltf文件的示例详解》gltf,全称是GLTransmissionFormat,是一种开放的3D文件格式,Python和C++是两个非常强大的工具,下面我们就来看看如何... 目录什么是gltf文件选择语言的原因安装必要的库解析gltf文件的步骤1. 读取gltf文件2. 提

Java中的runnable 和 callable 区别解析

《Java中的runnable和callable区别解析》Runnable接口用于定义不需要返回结果的任务,而Callable接口可以返回结果并抛出异常,通常与Future结合使用,Runnab... 目录1. Runnable接口1.1 Runnable的定义1.2 Runnable的特点1.3 使用Ru

Spring 中 BeanFactoryPostProcessor 的作用和示例源码分析

《Spring中BeanFactoryPostProcessor的作用和示例源码分析》Spring的BeanFactoryPostProcessor是容器初始化的扩展接口,允许在Bean实例化前... 目录一、概览1. 核心定位2. 核心功能详解3. 关键特性二、Spring 内置的 BeanFactory

使用EasyExcel实现简单的Excel表格解析操作

《使用EasyExcel实现简单的Excel表格解析操作》:本文主要介绍如何使用EasyExcel完成简单的表格解析操作,同时实现了大量数据情况下数据的分次批量入库,并记录每条数据入库的状态,感兴... 目录前言固定模板及表数据格式的解析实现Excel模板内容对应的实体类实现AnalysisEventLis

Java的volatile和sychronized底层实现原理解析

《Java的volatile和sychronized底层实现原理解析》文章详细介绍了Java中的synchronized和volatile关键字的底层实现原理,包括字节码层面、JVM层面的实现细节,以... 目录1. 概览2. Synchronized2.1 字节码层面2.2 JVM层面2.2.1 ente

Redis 内存淘汰策略深度解析(最新推荐)

《Redis内存淘汰策略深度解析(最新推荐)》本文详细探讨了Redis的内存淘汰策略、实现原理、适用场景及最佳实践,介绍了八种内存淘汰策略,包括noeviction、LRU、LFU、TTL、Rand... 目录一、 内存淘汰策略概述二、内存淘汰策略详解2.1 ​noeviction(不淘汰)​2.2 ​LR

IDEA与JDK、Maven安装配置完整步骤解析

《IDEA与JDK、Maven安装配置完整步骤解析》:本文主要介绍如何安装和配置IDE(IntelliJIDEA),包括IDE的安装步骤、JDK的下载与配置、Maven的安装与配置,以及如何在I... 目录1. IDE安装步骤2.配置操作步骤3. JDK配置下载JDK配置JDK环境变量4. Maven配置下