QEMU源码全解析 —— virtio(19)

2023-12-21 11:20
文章标签 源码 解析 19 qemu virtio

本文主要是介绍QEMU源码全解析 —— virtio(19),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

接前一篇文章:

上回书继续讲解virtio_pci_driver的probe回调函数virtio_pci_probe(),在讲到第5段代码的时候,

    if (force_legacy) {rc = virtio_pci_legacy_probe(vp_dev);/* Also try modern mode if we can't map BAR0 (no IO space). */if (rc == -ENODEV || rc == -ENOMEM)rc = virtio_pci_modern_probe(vp_dev);if (rc)goto err_probe;} else {rc = virtio_pci_modern_probe(vp_dev);if (rc == -ENODEV)rc = virtio_pci_legacy_probe(vp_dev);if (rc)goto err_probe;}

引出来两个函数:virtio_pci_legacy_probe和virtio_pci_modern_probe。本回就来对它们进行解析。当然,由于legacy已成过去,因此重点围绕virtio_pci_modern_probe函数进行解析,捎带手地也讲一下virtio_pci_legacy_probe()。为了便于理解,再次贴出两个函数的源码:

  • virtio_pci_legacy_probe

virtio_pci_legacy_probe函数在Linux内核源码/drivers/virtio/virtio_pci_legacy.c中,代码如下:

/* the PCI probing function */
int virtio_pci_legacy_probe(struct virtio_pci_device *vp_dev)
{struct virtio_pci_legacy_device *ldev = &vp_dev->ldev;struct pci_dev *pci_dev = vp_dev->pci_dev;int rc;ldev->pci_dev = pci_dev;rc = vp_legacy_probe(ldev);if (rc)return rc;vp_dev->isr = ldev->isr;vp_dev->vdev.id = ldev->id;vp_dev->vdev.config = &virtio_pci_config_ops;vp_dev->config_vector = vp_config_vector;vp_dev->setup_vq = setup_vq;vp_dev->del_vq = del_vq;return 0;
}
  • virtio_pci_modern_probe

virtio_pci_modern_probe函数在Linux内核源码/drivers/virtio/virtio_pci_modern.c中,代码如下:

/* the PCI probing function */
int virtio_pci_modern_probe(struct virtio_pci_device *vp_dev)
{struct virtio_pci_modern_device *mdev = &vp_dev->mdev;struct pci_dev *pci_dev = vp_dev->pci_dev;int err;mdev->pci_dev = pci_dev;err = vp_modern_probe(mdev);if (err)return err;if (mdev->device)vp_dev->vdev.config = &virtio_pci_config_ops;elsevp_dev->vdev.config = &virtio_pci_config_nodev_ops;vp_dev->config_vector = vp_config_vector;vp_dev->setup_vq = setup_vq;vp_dev->del_vq = del_vq;vp_dev->isr = mdev->isr;vp_dev->vdev.id = mdev->id;return 0;
}

virtio_pci_modern_probe函数中最主要的是调用了vp_modern_probe函数,其在Linux内核源码/drivers/virtio/virtio_pci_modern_dev.c中,代码如下:

/** vp_modern_probe: probe the modern virtio pci device, note that the* caller is required to enable PCI device before calling this function.* @mdev: the modern virtio-pci device** Return 0 on succeed otherwise fail*/
int vp_modern_probe(struct virtio_pci_modern_device *mdev)
{struct pci_dev *pci_dev = mdev->pci_dev;int err, common, isr, notify, device;u32 notify_length;u32 notify_offset;check_offsets();/* We only own devices >= 0x1000 and <= 0x107f: leave the rest. */if (pci_dev->device < 0x1000 || pci_dev->device > 0x107f)return -ENODEV;if (pci_dev->device < 0x1040) {/* Transitional devices: use the PCI subsystem device id as* virtio device id, same as legacy driver always did.*/mdev->id.device = pci_dev->subsystem_device;} else {/* Modern devices: simply use PCI device id, but start from 0x1040. */mdev->id.device = pci_dev->device - 0x1040;}mdev->id.vendor = pci_dev->subsystem_vendor;/* check for a common config: if not, use legacy mode (bar 0). */common = virtio_pci_find_capability(pci_dev, VIRTIO_PCI_CAP_COMMON_CFG,IORESOURCE_IO | IORESOURCE_MEM,&mdev->modern_bars);if (!common) {dev_info(&pci_dev->dev,"virtio_pci: leaving for legacy driver\n");return -ENODEV;}/* If common is there, these should be too... */isr = virtio_pci_find_capability(pci_dev, VIRTIO_PCI_CAP_ISR_CFG,IORESOURCE_IO | IORESOURCE_MEM,&mdev->modern_bars);notify = virtio_pci_find_capability(pci_dev, VIRTIO_PCI_CAP_NOTIFY_CFG,IORESOURCE_IO | IORESOURCE_MEM,&mdev->modern_bars);if (!isr || !notify) {dev_err(&pci_dev->dev,"virtio_pci: missing capabilities %i/%i/%i\n",common, isr, notify);return -EINVAL;}err = dma_set_mask_and_coherent(&pci_dev->dev, DMA_BIT_MASK(64));if (err)err = dma_set_mask_and_coherent(&pci_dev->dev,DMA_BIT_MASK(32));if (err)dev_warn(&pci_dev->dev, "Failed to enable 64-bit or 32-bit DMA.  Trying to continue, but this might not work.\n");/* Device capability is only mandatory for devices that have* device-specific configuration.*/device = virtio_pci_find_capability(pci_dev, VIRTIO_PCI_CAP_DEVICE_CFG,IORESOURCE_IO | IORESOURCE_MEM,&mdev->modern_bars);err = pci_request_selected_regions(pci_dev, mdev->modern_bars,"virtio-pci-modern");if (err)return err;err = -EINVAL;mdev->common = vp_modern_map_capability(mdev, common,sizeof(struct virtio_pci_common_cfg), 4,0, sizeof(struct virtio_pci_common_cfg),NULL, NULL);if (!mdev->common)goto err_map_common;mdev->isr = vp_modern_map_capability(mdev, isr, sizeof(u8), 1,0, 1,NULL, NULL);if (!mdev->isr)goto err_map_isr;/* Read notify_off_multiplier from config space. */pci_read_config_dword(pci_dev,notify + offsetof(struct virtio_pci_notify_cap,notify_off_multiplier),&mdev->notify_offset_multiplier);/* Read notify length and offset from config space. */pci_read_config_dword(pci_dev,notify + offsetof(struct virtio_pci_notify_cap,cap.length),&notify_length);pci_read_config_dword(pci_dev,notify + offsetof(struct virtio_pci_notify_cap,cap.offset),&notify_offset);/* We don't know how many VQs we'll map, ahead of the time.* If notify length is small, map it all now.* Otherwise, map each VQ individually later.*/if ((u64)notify_length + (notify_offset % PAGE_SIZE) <= PAGE_SIZE) {mdev->notify_base = vp_modern_map_capability(mdev, notify,2, 2,0, notify_length,&mdev->notify_len,&mdev->notify_pa);if (!mdev->notify_base)goto err_map_notify;} else {mdev->notify_map_cap = notify;}/* Again, we don't know how much we should map, but PAGE_SIZE* is more than enough for all existing devices.*/if (device) {mdev->device = vp_modern_map_capability(mdev, device, 0, 4,0, PAGE_SIZE,&mdev->device_len,NULL);if (!mdev->device)goto err_map_device;}return 0;err_map_device:if (mdev->notify_base)pci_iounmap(pci_dev, mdev->notify_base);
err_map_notify:pci_iounmap(pci_dev, mdev->isr);
err_map_isr:pci_iounmap(pci_dev, mdev->common);
err_map_common:pci_release_selected_regions(pci_dev, mdev->modern_bars);return err;
}
EXPORT_SYMBOL_GPL(vp_modern_probe);

实际上在老版本KVM即Linux内核代码中,vp_modern_probe函数中的内容绝大多数是直接放在virtio_pci_modern_probe函数中的,后来才单独封了这样一个函数。

(1)vp_modern_probe首先设置了virtio设备的verdor ID和device ID。代码片段如下:

    /* We only own devices >= 0x1000 and <= 0x107f: leave the rest. */if (pci_dev->device < 0x1000 || pci_dev->device > 0x107f)return -ENODEV;if (pci_dev->device < 0x1040) {/* Transitional devices: use the PCI subsystem device id as* virtio device id, same as legacy driver always did.*/mdev->id.device = pci_dev->subsystem_device;} else {/* Modern devices: simply use PCI device id, but start from 0x1040. */mdev->id.device = pci_dev->device - 0x1040;}mdev->id.vendor = pci_dev->subsystem_vendor;

值得注意的是,virtio PCI代理设备的device iD就是前文书(参见QEMU源码全解析 —— virtio(14))在讲virtio_pci_device_plugged函数(QEMU源码中)时设置的PCI_DEVICE_ID_VIRTIO_10_BASE+VIRTIO_ID_BALLOON,即0x1040+5。

所以,这里virtio设备的device ID(mdev->id.device)就是0x1040+5-0x1040=5,也就代表了VIRTIO_ID_BALLOON。

(2)接下来,调用多次virtio_pci_find_capability函数来发现virtio PCI代理设备的pci capability。代码片段如下:

/* check for a common config: if not, use legacy mode (bar 0). */common = virtio_pci_find_capability(pci_dev, VIRTIO_PCI_CAP_COMMON_CFG,IORESOURCE_IO | IORESOURCE_MEM,&mdev->modern_bars);if (!common) {dev_info(&pci_dev->dev,"virtio_pci: leaving for legacy driver\n");return -ENODEV;}/* If common is there, these should be too... */isr = virtio_pci_find_capability(pci_dev, VIRTIO_PCI_CAP_ISR_CFG,IORESOURCE_IO | IORESOURCE_MEM,&mdev->modern_bars);notify = virtio_pci_find_capability(pci_dev, VIRTIO_PCI_CAP_NOTIFY_CFG,IORESOURCE_IO | IORESOURCE_MEM,&mdev->modern_bars);if (!isr || !notify) {dev_err(&pci_dev->dev,"virtio_pci: missing capabilities %i/%i/%i\n",common, isr, notify);return -EINVAL;}err = dma_set_mask_and_coherent(&pci_dev->dev, DMA_BIT_MASK(64));if (err)err = dma_set_mask_and_coherent(&pci_dev->dev,DMA_BIT_MASK(32));if (err)dev_warn(&pci_dev->dev, "Failed to enable 64-bit or 32-bit DMA.  Trying to continue, but this might not work.\n");/* Device capability is only mandatory for devices that have* device-specific configuration.*/device = virtio_pci_find_capability(pci_dev, VIRTIO_PCI_CAP_DEVICE_CFG,IORESOURCE_IO | IORESOURCE_MEM,&mdev->modern_bars);

这也是在(QEMU源码)virtio_pci_device_plugged函数中写入到virtio PCI代理设备的配置空间中的,参见QEMU源码全解析 —— virtio(14)和QEMU源码全解析 —— virtio(15)。

(3)virtio_pci_find_capability函数找到所属的PCI BAR,然后写入到virt_pci_device的modern_bars成员中。代码片段如下:

    /* Device capability is only mandatory for devices that have* device-specific configuration.*/device = virtio_pci_find_capability(pci_dev, VIRTIO_PCI_CAP_DEVICE_CFG,IORESOURCE_IO | IORESOURCE_MEM,&mdev->modern_bars);

从(QEMU源码)virtio_pci_realize函数中可以知道这个modern_bars是1<<4,如下图所示:

(4)接着,pci_request_selected_regions函数就将virtio PCI代理设备的BAR地址空间保留出来了。代码片段如下:

    err = pci_request_selected_regions(pci_dev, mdev->modern_bars,"virtio-pci-modern");if (err)return err;

(5)调用vp_modern_map_capability函数将对应的capability在PCI代理设备中的BAR空间映射到内核地址空间。代码片段如下:

    err = -EINVAL;mdev->common = vp_modern_map_capability(mdev, common,sizeof(struct virtio_pci_common_cfg), 4,0, sizeof(struct virtio_pci_common_cfg),NULL, NULL);if (!mdev->common)goto err_map_common;mdev->isr = vp_modern_map_capability(mdev, isr, sizeof(u8), 1,0, 1,NULL, NULL);if (!mdev->isr)goto err_map_isr;/* Read notify_off_multiplier from config space. */pci_read_config_dword(pci_dev,notify + offsetof(struct virtio_pci_notify_cap,notify_off_multiplier),&mdev->notify_offset_multiplier);/* Read notify length and offset from config space. */pci_read_config_dword(pci_dev,notify + offsetof(struct virtio_pci_notify_cap,cap.length),&notify_length);pci_read_config_dword(pci_dev,notify + offsetof(struct virtio_pci_notify_cap,cap.offset),&notify_offset);/* We don't know how many VQs we'll map, ahead of the time.* If notify length is small, map it all now.* Otherwise, map each VQ individually later.*/if ((u64)notify_length + (notify_offset % PAGE_SIZE) <= PAGE_SIZE) {mdev->notify_base = vp_modern_map_capability(mdev, notify,2, 2,0, notify_length,&mdev->notify_len,&mdev->notify_pa);if (!mdev->notify_base)goto err_map_notify;} else {mdev->notify_map_cap = notify;}/* Again, we don't know how much we should map, but PAGE_SIZE* is more than enough for all existing devices.*/if (device) {mdev->device = vp_modern_map_capability(mdev, device, 0, 4,0, PAGE_SIZE,&mdev->device_len,NULL);if (!mdev->device)goto err_map_device;}

如mp_dev(struct virtio_pci_modern_device *mdev = &vp_dev->mdev;)的common成员映射了virtio_pci_common_cfg的数据到内核中。这样,后续就可以直接通过这个内存地址空间来访问common这一capability了,其它的capability(isr、notify、device)也与此类似。

vp_modern_map_capability函数在Linux内核源码/drivers/virtio/virtio_pci_modern_dev.c中,代码如下:

/** vp_modern_map_capability - map a part of virtio pci capability* @mdev: the modern virtio-pci device* @off: offset of the capability* @minlen: minimal length of the capability* @align: align requirement* @start: start from the capability* @size: map size* @len: the length that is actually mapped* @pa: physical address of the capability** Returns the io address of for the part of the capability*/
static void __iomem *
vp_modern_map_capability(struct virtio_pci_modern_device *mdev, int off,size_t minlen, u32 align, u32 start, u32 size,size_t *len, resource_size_t *pa)
{struct pci_dev *dev = mdev->pci_dev;u8 bar;u32 offset, length;void __iomem *p;pci_read_config_byte(dev, off + offsetof(struct virtio_pci_cap,bar),&bar);pci_read_config_dword(dev, off + offsetof(struct virtio_pci_cap, offset),&offset);pci_read_config_dword(dev, off + offsetof(struct virtio_pci_cap, length),&length);/* Check if the BAR may have changed since we requested the region. */if (bar >= PCI_STD_NUM_BARS || !(mdev->modern_bars & (1 << bar))) {dev_err(&dev->dev,"virtio_pci: bar unexpectedly changed to %u\n", bar);return NULL;}if (length <= start) {dev_err(&dev->dev,"virtio_pci: bad capability len %u (>%u expected)\n",length, start);return NULL;}if (length - start < minlen) {dev_err(&dev->dev,"virtio_pci: bad capability len %u (>=%zu expected)\n",length, minlen);return NULL;}length -= start;if (start + offset < offset) {dev_err(&dev->dev,"virtio_pci: map wrap-around %u+%u\n",start, offset);return NULL;}offset += start;if (offset & (align - 1)) {dev_err(&dev->dev,"virtio_pci: offset %u not aligned to %u\n",offset, align);return NULL;}if (length > size)length = size;if (len)*len = length;if (minlen + offset < minlen ||minlen + offset > pci_resource_len(dev, bar)) {dev_err(&dev->dev,"virtio_pci: map virtio %zu@%u ""out of range on bar %i length %lu\n",minlen, offset,bar, (unsigned long)pci_resource_len(dev, bar));return NULL;}p = pci_iomap_range(dev, bar, offset, length);if (!p)dev_err(&dev->dev,"virtio_pci: unable to map virtio %u@%u on bar %i\n",length, offset, bar);else if (pa)*pa = pci_resource_start(dev, bar) + offset;return p;
}

这样实际上就将virtio PCI代理设备的BAR映射到虚拟机内核地址空间了,后续直接访问这些地址即可实现对virtio PCI代理设备的配置和控制。

回到virtio_pci_modern_probe函数。

/* the PCI probing function */
int virtio_pci_modern_probe(struct virtio_pci_device *vp_dev)
{struct virtio_pci_modern_device *mdev = &vp_dev->mdev;struct pci_dev *pci_dev = vp_dev->pci_dev;int err;mdev->pci_dev = pci_dev;err = vp_modern_probe(mdev);if (err)return err;if (mdev->device)vp_dev->vdev.config = &virtio_pci_config_ops;elsevp_dev->vdev.config = &virtio_pci_config_nodev_ops;vp_dev->config_vector = vp_config_vector;vp_dev->setup_vq = setup_vq;vp_dev->del_vq = del_vq;vp_dev->isr = mdev->isr;vp_dev->vdev.id = mdev->id;return 0;
}

在调用完vp_modern_probe函数之后,virtio_pci_modern_probe函数接着设置virtio_pci_device中virtio_device的成员vdev的config成员。如果有device这一capability,则设置为virtio_pci_config_ops,否则设置为virtio_pci_config_nodev_ops。

之后设置vpdev即struct virtio_pci_device的几个回调函数:config_vector与MSI中断有关,设置为vp_config_vector;setup_vq用来配置virtio设备virt queue,设置为setup_vq;del_vq用来删除virt queue,设置为del_vq。

至此,virtio_pci_modern_probe函数就解析完了。

欲知后事如何,且看下回分解。

这篇关于QEMU源码全解析 —— virtio(19)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/519787

相关文章

nginx -t、nginx -s stop 和 nginx -s reload 命令的详细解析(结合应用场景)

《nginx-t、nginx-sstop和nginx-sreload命令的详细解析(结合应用场景)》本文解析Nginx的-t、-sstop、-sreload命令,分别用于配置语法检... 以下是关于 nginx -t、nginx -s stop 和 nginx -s reload 命令的详细解析,结合实际应

MyBatis中$与#的区别解析

《MyBatis中$与#的区别解析》文章浏览阅读314次,点赞4次,收藏6次。MyBatis使用#{}作为参数占位符时,会创建预处理语句(PreparedStatement),并将参数值作为预处理语句... 目录一、介绍二、sql注入风险实例一、介绍#(井号):MyBATis使用#{}作为参数占位符时,会

PostgreSQL的扩展dict_int应用案例解析

《PostgreSQL的扩展dict_int应用案例解析》dict_int扩展为PostgreSQL提供了专业的整数文本处理能力,特别适合需要精确处理数字内容的搜索场景,本文给大家介绍PostgreS... 目录PostgreSQL的扩展dict_int一、扩展概述二、核心功能三、安装与启用四、字典配置方法

深度解析Java DTO(最新推荐)

《深度解析JavaDTO(最新推荐)》DTO(DataTransferObject)是一种用于在不同层(如Controller层、Service层)之间传输数据的对象设计模式,其核心目的是封装数据,... 目录一、什么是DTO?DTO的核心特点:二、为什么需要DTO?(对比Entity)三、实际应用场景解析

深度解析Java项目中包和包之间的联系

《深度解析Java项目中包和包之间的联系》文章浏览阅读850次,点赞13次,收藏8次。本文详细介绍了Java分层架构中的几个关键包:DTO、Controller、Service和Mapper。_jav... 目录前言一、各大包1.DTO1.1、DTO的核心用途1.2. DTO与实体类(Entity)的区别1

Java中的雪花算法Snowflake解析与实践技巧

《Java中的雪花算法Snowflake解析与实践技巧》本文解析了雪花算法的原理、Java实现及生产实践,涵盖ID结构、位运算技巧、时钟回拨处理、WorkerId分配等关键点,并探讨了百度UidGen... 目录一、雪花算法核心原理1.1 算法起源1.2 ID结构详解1.3 核心特性二、Java实现解析2.

使用Python绘制3D堆叠条形图全解析

《使用Python绘制3D堆叠条形图全解析》在数据可视化的工具箱里,3D图表总能带来眼前一亮的效果,本文就来和大家聊聊如何使用Python实现绘制3D堆叠条形图,感兴趣的小伙伴可以了解下... 目录为什么选择 3D 堆叠条形图代码实现:从数据到 3D 世界的搭建核心代码逐行解析细节优化应用场景:3D 堆叠图

深度解析Python装饰器常见用法与进阶技巧

《深度解析Python装饰器常见用法与进阶技巧》Python装饰器(Decorator)是提升代码可读性与复用性的强大工具,本文将深入解析Python装饰器的原理,常见用法,进阶技巧与最佳实践,希望可... 目录装饰器的基本原理函数装饰器的常见用法带参数的装饰器类装饰器与方法装饰器装饰器的嵌套与组合进阶技巧

解析C++11 static_assert及与Boost库的关联从入门到精通

《解析C++11static_assert及与Boost库的关联从入门到精通》static_assert是C++中强大的编译时验证工具,它能够在编译阶段拦截不符合预期的类型或值,增强代码的健壮性,通... 目录一、背景知识:传统断言方法的局限性1.1 assert宏1.2 #error指令1.3 第三方解决

全面解析MySQL索引长度限制问题与解决方案

《全面解析MySQL索引长度限制问题与解决方案》MySQL对索引长度设限是为了保持高效的数据检索性能,这个限制不是MySQL的缺陷,而是数据库设计中的权衡结果,下面我们就来看看如何解决这一问题吧... 目录引言:为什么会有索引键长度问题?一、问题根源深度解析mysql索引长度限制原理实际场景示例二、五大解决