图像增强︱window7+opencv3.2+keras/theano简单应用(函数解读)

本文主要是介绍图像增强︱window7+opencv3.2+keras/theano简单应用(函数解读),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在服务器上安装opencv遇到跟CUDA8.0不适配的问题,于是不得不看看其他机器是否可以预装并使用。
.


一、python+opencv3.2安装

opencv在windows安装为啥这么简单?
安装流程:
1、下载opencv文件opencv-3.2.0-vc14.exe
2、点击下载,其实就是解压过程,随便放在一个盘里面。
3、python部署阶段,
进入OpenCV的安装目录下找到+复制:\build\python\2.7\x64\cv2.pyd
将cv2.pyd复制到python的子目录:\Lib\site-packages\
4、即可直接调用:

import cv2

.


二、windows+keras/theano

Keras深度学习框架是基于Theano或Tensorflow框架安装的,所以首先要准备底层框架的搭建,用tensorflow比较麻烦,所以选用Theano安装即可。

1、tensorflow/keras框架

同时如果要使用tensorflow0.12版本+python3.5及以上,也可以使用Anaconda 3.5.
一种比较好的方式使用docker:
参考:TensorFlow 官方文档中文版、下载与安装

如果要使用原生的window安装:

  • (1)前提:现有了python3.5或Anaconda 3.5
  • (2)下载:tensorflow-0.12.0rc0-cp35-cp35m-win_amd64.whl,下载的东西放在某文件夹中
  • (3)在Power Shell中输入下述命令实现本地安装:
pip install F:\DevResources\tensorflow_gpu-0.12.0rc0-cp35-cp35m-win_amd64.whl
  • (4)验证安装

到“所有程序”下找到”Python 3.5 64bit”,出现命令窗口,输入测试代码:

>>>import tensorflow as tf
>>>sess = tf.Session()
>>>a = tf.constant(10)
>>>b = tf.constant(22)
>>>print(sess.run(a + b))
32

正确输出32则为成功安装。

报错无法正常下载numpy 1.11.0:参考博客:原生Windows安装TensorFlow 0.12方法
.

2、theano/keras框架

安装过程:

  • (1)安装theano,Power Shell中输入:
pip install theano -U --pre
  • (2)安装keras:
pip install keras -U --pre
  • (3)修改默认后端:很关键,不然会一直报错:ImportError: No module named tensorflow
    因为,keras默认后端是给tensorflow,
    打开C:\Users\当前用户名.keras,修改文件夹内的keras.json文件如下:
{
"image_dim_ordering":"th",
"epsilon":1e-07,
"floatx":"float32",
"backend":"theano"
}
  • (4)验证安装
>>>import keras
Using Theano(Tensorflow) backend.
>>>

当然,还有theano的加速模式,可参考: Keras安装和配置指南(Windows)
.


三、用python+keras/theano进行图像增强(Data Augmentation)

1、图像增强的方式

以下一共有8中图像变换的方式:

  • 旋转 | 反射变换(Rotation/reflection): 随机旋转图像一定角度; 改变图像内容的朝向;
  • 翻转变换(flip): 沿着水平或者垂直方向翻转图像;
  • 缩放变换(zoom): 按照一定的比例放大或者缩小图像;
  • 平移变换(shift): 在图像平面上对图像以一定方式进行平移; 可以采用随机或人为定义的方式指定平移范围和平移步长,
    沿水平或竖直方向进行平移. 改变图像内容的位置;
  • 尺度变换(scale): 对图像按照指定的尺度因子, 进行放大或缩小; 或者参照SIFT特征提取思想,
    利用指定的尺度因子对图像滤波构造尺度空间. 改变图像内容的大小或模糊程度;
  • 对比度变换(contrast): 在图像的HSV颜色空间,改变饱和度S和V亮度分量,保持色调H不变.
    对每个像素的S和V分量进行指数运算(指数因子在0.25到4之间), 增加光照变化;
  • 噪声扰动(noise): 对图像的每个像素RGB进行随机扰动, 常用的噪声模式是椒盐噪声和高斯噪声;
  • 颜色变换(color): 在训练集像素值的RGB颜色空间进行PCA, 得到RGB空间的3个主方向向量,3个特征值
    .

2、图像增强的案例

网上有一个极为广泛的套路,参考博客《深度学习中的Data Augmentation方法和代码实现》、《深度学习中的数据增强实现(Data Augmentation)》、《keras中文文档-图片预处理》:

from keras.preprocessing.image import ImageDataGenerator, array_to_img, img_to_array, load_img# 主要的增强函数
datagen = ImageDataGenerator(rotation_range=0.2,# 整数,旋转范围, 随机旋转(0-180)度width_shift_range=0.2,# 浮点数,以图像的长宽小部分百分比为变化范围进行横向平移height_shift_range=0.2,# 浮点数,以图像的长宽小部分百分比为变化范围进行竖直平移shear_range=0.2,# 浮点数,水平或垂直投影变换zoom_range=0.2,# 浮点数,随机缩放的幅度,[lower,upper] = [1 - zoom_range, 1+zoom_range]horizontal_flip=True,# 布尔值,进行随机水平翻转fill_mode='nearest')# 填充像素,超出边界时,有四种方式:‘constant’、‘nearest’、‘reflect’、‘wrap’
# featurewise_center=True  # 使输入数据集去中心化(均值为0)
# featurewise_std_normalization=True #将输入除以数据集的标准差以完成标准化
# rescale=1./255,#重放缩因子,默认为None. 如果为None或0则不进行放缩,否则会将该数值乘到数据上(在应用其他变换之前)
# zca_whitening=True #对输入数据施加ZCA白化
# channel_shift_range=0.2 #随机通道偏移的幅度
# vertical_flip=True #布尔值,进行随机竖直翻转#数据导入
img = load_img('C:\\Users\\Desktop\\003.jpg')  
x = img_to_array(img)  
x = x.reshape((1,) + x.shape)  
# the .flow() command below generates batches of randomly transformed images
# and saves the results to the `preview/` directory
i = 0
for batch in datagen.flow(x, batch_size=1,save_to_dir='C:\\Users\\Desktop',  #存放文件夹save_prefix='lena', #存放文件名字save_format='jpg'):i += 1if i > 20:break 

其中:
ImageDataGenerator是图像增强的主要函数,里面包含了很多类型的增强方法
load_img、img_to_array、x.reshape图像载入函数
datagen.flow,增强执行函数

其中:

  • load_img函数:
load_img(path, grayscale=False, target_size=None)
#path:图像载入的路径
#grayscale:是否只载入灰度,默认为false
#target_size:是否需要重新框定大小,默认是原图大小,其中如果要修改,则类似:
image.load_img(img_path, target_size=(224, 224))
  • img_to_array函数:
img_to_array(img, dim_ordering='default')
#img,load_img之后的内容
#dim_ordering,图像的格式是否更改,一般是default,不做任何更改

函数源码来源:
https://github.com/fchollet/keras/blob/master/keras/preprocessing/image.py

.


延伸一:win下theano安装报错

ImportError: cannot import name gof

网上的解决方案为:

pip install --upgrade --no-deps git+git://github.com/Theano/Theano.git

但是windows里面没有git,于是我安装了git之后,执行上述内容,的确安装完成,但是就是Import不了… 无解了….

也有人说重新安装theano

http://blog.csdn.net/zhouyongsdzh/article/details/24449645
.


延伸二:python中常用数据增强的library

下面这个Github的作者做了一个library, 实现了N种 data augmentation, 还嫌你的数据太少吗。。。试试吧!! 输入一只小老鼠,输出一窝小老鼠。
github地址:https://github.com/aleju/imgaug
这里写图片描述

这篇关于图像增强︱window7+opencv3.2+keras/theano简单应用(函数解读)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/518502

相关文章

使用Python开发一个简单的本地图片服务器

《使用Python开发一个简单的本地图片服务器》本文介绍了如何结合wxPython构建的图形用户界面GUI和Python内建的Web服务器功能,在本地网络中搭建一个私人的,即开即用的网页相册,文中的示... 目录项目目标核心技术栈代码深度解析完整代码工作流程主要功能与优势潜在改进与思考运行结果总结你是否曾经

C/C++错误信息处理的常见方法及函数

《C/C++错误信息处理的常见方法及函数》C/C++是两种广泛使用的编程语言,特别是在系统编程、嵌入式开发以及高性能计算领域,:本文主要介绍C/C++错误信息处理的常见方法及函数,文中通过代码介绍... 目录前言1. errno 和 perror()示例:2. strerror()示例:3. perror(

Kotlin 作用域函数apply、let、run、with、also使用指南

《Kotlin作用域函数apply、let、run、with、also使用指南》在Kotlin开发中,作用域函数(ScopeFunctions)是一组能让代码更简洁、更函数式的高阶函数,本文将... 目录一、引言:为什么需要作用域函数?二、作用域函China编程数详解1. apply:对象配置的 “流式构建器”最

Mysql表的简单操作(基本技能)

《Mysql表的简单操作(基本技能)》在数据库中,表的操作主要包括表的创建、查看、修改、删除等,了解如何操作这些表是数据库管理和开发的基本技能,本文给大家介绍Mysql表的简单操作,感兴趣的朋友一起看... 目录3.1 创建表 3.2 查看表结构3.3 修改表3.4 实践案例:修改表在数据库中,表的操作主要

java之Objects.nonNull用法代码解读

《java之Objects.nonNull用法代码解读》:本文主要介绍java之Objects.nonNull用法代码,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐... 目录Java之Objects.nonwww.chinasem.cnNull用法代码Objects.nonN

Python中随机休眠技术原理与应用详解

《Python中随机休眠技术原理与应用详解》在编程中,让程序暂停执行特定时间是常见需求,当需要引入不确定性时,随机休眠就成为关键技巧,下面我们就来看看Python中随机休眠技术的具体实现与应用吧... 目录引言一、实现原理与基础方法1.1 核心函数解析1.2 基础实现模板1.3 整数版实现二、典型应用场景2

springboot简单集成Security配置的教程

《springboot简单集成Security配置的教程》:本文主要介绍springboot简单集成Security配置的教程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,... 目录集成Security安全框架引入依赖编写配置类WebSecurityConfig(自定义资源权限规则

Python Dash框架在数据可视化仪表板中的应用与实践记录

《PythonDash框架在数据可视化仪表板中的应用与实践记录》Python的PlotlyDash库提供了一种简便且强大的方式来构建和展示互动式数据仪表板,本篇文章将深入探讨如何使用Dash设计一... 目录python Dash框架在数据可视化仪表板中的应用与实践1. 什么是Plotly Dash?1.1

Android Kotlin 高阶函数详解及其在协程中的应用小结

《AndroidKotlin高阶函数详解及其在协程中的应用小结》高阶函数是Kotlin中的一个重要特性,它能够将函数作为一等公民(First-ClassCitizen),使得代码更加简洁、灵活和可... 目录1. 引言2. 什么是高阶函数?3. 高阶函数的基础用法3.1 传递函数作为参数3.2 Lambda

Java中&和&&以及|和||的区别、应用场景和代码示例

《Java中&和&&以及|和||的区别、应用场景和代码示例》:本文主要介绍Java中的逻辑运算符&、&&、|和||的区别,包括它们在布尔和整数类型上的应用,文中通过代码介绍的非常详细,需要的朋友可... 目录前言1. & 和 &&代码示例2. | 和 ||代码示例3. 为什么要使用 & 和 | 而不是总是使