【C++】理解string类的核心理念(实现一个自己的string类)

2023-12-21 02:04

本文主要是介绍【C++】理解string类的核心理念(实现一个自己的string类),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

一、引言

二、自我实现

1.成员变量的读写

2.构造与析构

3.迭代器

4.插入字符或字符串

尾插

中间插入

5.删除字符或子字符串

6.查找字符或子串

7.获取子串

三、完整代码

四、补充


一、引言

        实现自己的 string 类是学习 C++ 语言和面向对象编程的一个好方法。通过编写一个简单的字符串类,可以深入理解类的概念、内存管理、构造函数、析构函数等核心理念。理解了string类的底层逻辑之后会发现,一些在上层看似复杂的操作在底层其实很简单。下面就让我们来实现一个自己的string类吧!

二、自我实现

1.成员变量的读写

        string是一个字符串类,所以我们在定义成员变量的时候需要一个char类型的指针,指向存放字符串的空间,为了方便实现对字符串的操作以及内存的管理,还需要定义两个整形变量,一个表示字符串长度,一个表示当前空间大小。

private:char* _str;size_t _size;size_t _capacity;};

这里定义成私有成员变量所以还需要使变量可读:

        const char* c_str() const //const关键字进行函数重载,表示const对象也可以调用,不加则不行{return _str;}size_t size() const{return _size;}

这里的 const是一个关键字,作用是对函数进行重载,使其具有普通成员函数以及常量成员函数的双重身份,如果没有常量成员函数,那么常量对象就无法调用不带 const 修饰的成员函数,这可能导致在使用常量对象时的一些限制和不便。

我们需要重载[],完成对指定位置的字符的读或写操作:

		char& operator[](size_t pos) //引用返回:返回值出了作用域任然存在,可读可写{assert(pos < _size);return _str[pos];}const char& operator[](size_t pos) const //const对象调用这个,只读{assert(pos < _size);return _str[pos];}

这里提供两个版本,一个是普通成员函数,一个是常量成员函数,之所以要分开写是因为他们的返回值类型不同,一个是可读可写,一个是只读不可写。

2.构造与析构

  • 默认构造函数
		string(const char* str = "") //全缺省,常量字符串末尾默认'\0':_size(strlen(str)),_capacity(_size),_str(new char[_capacity + 1]){strcpy(_str, str);}

其作用是创建一个 string 类对象,该对象的内部包含一个动态分配的字符数组 _str,存储了传入的 C 字符串的内容,并且记录了字符串的长度 _size 和容量 _capacity。我们调用无参构造函数时 _str内部默认存在有字符 '\0'。'\0 '标记了字符串的末尾。

  • 拷贝构造函数
		string(const string& s){_str = new char[s._capacity + 1];strcpy(_str, s._str);_size = s._size;_capacity = s._capacity;}

这是一个字符串类的拷贝构造函数的实现。拷贝构造函数用于创建一个新的对象,并以另一个同类型对象的内容为模板进行初始化。具体来说,对于字符串类而言,这段代码的作用是创建一个新的字符串对象,并将其内容初始化为另一个字符串对象 s 的内容的副本。

这里的构造函数都是以深拷贝的方式实现,新对象拥有一个新的内存块,该内存块包含源对象或源字符串的副本。

  • 析构函数
		~string(){delete[] _str;_str = nullptr;_size = _capacity = 0;}

析构函数无需多言,需要注意的是 delete后面一定要加 [],表示释放的是一个字符串的空间。

3.迭代器

string类提供了迭代器(iterator)来遍历字符串的元素,迭代器是一种抽象的、通用的数据访问方式,它可以被用于遍历不同类型的数据结构。在string中,迭代器通常是一个指向字符的指针或类似指针的对象,这里我们模拟实现的是指针类型的迭代器:

//迭代器typedef char* iterator;typedef const char* const_iterator;

同样也有普通指针和常量指针两个版本

		iterator begin(){return _str;}iterator end(){return _str + _size;} const_iterator begin() const{return _str;}const_iterator end() const{return _str + _size;} 

begin() 和 end()分别返回指向字符串首元素以及尾元素的后一位,由于返回值的不同,普通成员函数与常量成员函数要分开写。

其实实现了迭代器也就实现了基于范围的for循环,不信可以看看以下代码:

#include<iostream>
using namespace std;#include"string.h"void text_iterator()
{bit::string a("Hello world!");bit::string::iterator it = a.begin();while (it != a.end()){cout << *it;it++;}cout << endl;for (auto ch : a){cout << ch;}cout << endl;
}int main()
{text_iterator();return 0;
}

此时输出结果是:

看到了吗,两个循环的结果是一样的,我们没有做任何操作,就实现了基于范围的for循环诶,其实,实现了迭代器之后,第二个循环体与前一个循环体对编译器来看是一样的,这是给编译器设计好的,不需要我们进行多余的操作。

4.插入字符或字符串

在进行插入操作时,我们要先判断字符串的空间大小,如果插入的字符/字符串的长度大于所剩余的空间,就需要进行扩容,在string中,reserve成员函数实现上述功能:

//扩容void reserve(size_t n){if (n > _capacity){char* tmp = new char[n + 1];strcpy(tmp, _str);delete[] _str;_str = tmp;//可以直接指针复制,令两者指向同一块空间_capacity = n;}}

如果需要扩容,我们的做法是开辟一块新的空间,存放原字符串的副本,并且对原字符串进行空间释放,再进行指针复制,令_str指向新开辟的那块空间。

尾插

接下来就可以进行尾部插入字符或字符串的操作了:

		//插入字符void push_back(char ch){if (_size == _capacity){//2倍扩容reserve(_capacity == 0 ? 4 : _capacity * 2);}_str[_size] = ch;++_size;_str[_size] = '\0';}

插入字符时,首先判断空间大小,空间不足则进行2倍扩容,要注意的是原字符串为空的情况,此时就不是2倍扩容了,而是给定一个初始大小的空间。插入一个字符不仅要对插入位置进行赋值,还要将它的下一位置赋值为'\0'。

//插入字符串void append(const char* str){size_t len = strlen(str);if (_size + len > _capacity){//至少扩容到_size+lenreserve(_size + len);}strcpy(_str + _size, str);_size += len;}

插入字符串的操作和插入字符类似。进行扩容操作之后用strcpy函数将要插入的字符串赋值到原字符串的末尾处。

我们在使用string类的时候经常会用到其重载后的+=操作,其作用是直接在str后面插入字符或字符串,很方便,其实实现起来也很简单,就是用到上述的插入函数:

		string& operator+=(char ch){push_back(ch);return *this;}string& operator+=(const char* str){append(str);return *this;}

中间插入

string类中,insert函数用于在字符串的指定位置插入字符或字符串。

		void insert(size_t pos, size_t n, char ch){assert(pos <= _size);if (_size + n < _capacity){//至少扩容到_size+nreserve(_size + n);}//挪动数据size_t end = _size;while (end >= pos && end != -1) //若pos为0呢?end!=-1{_str[end + n] = _str[end];--end;}for (size_t i = 0; i < n; i++){_str[pos + i] = ch;}_size += n;}void insert(size_t pos, const char* str){assert(pos <= _size);size_t len = strlen(str);if (_size + len < _capacity){//至少扩容到_size+nreserve(_size + len);}//挪动数据size_t end = _size;while (end >= pos && end != -1) //若pos为0呢?end!=-1{_str[end + len] = _str[end];--end;}for (size_t i = 0; i < len; i++){_str[pos + i] = str[i];}_size += len;}

同样要先判断空间大小,进行扩容操作。然后要进行数据的挪动,挪动的范围是pos到end位置,挪动的距离是n。这里要注意一个特殊情况,就是当pos为0时,也就是要将字符串整体向后移动时,标记当前挪动字符位置的变量end在对首字符挪动完之后,其值会自减为-1,但是end是一个无符号整形,因此此时的-1会被解释为该无符号整数的最大可能值,所以还有加上一个判断条件:end != -1。

5.删除字符或子字符串

string 类中,erase 函数用于从字符串中删除字符或子字符串。

		void erase(size_t pos, size_t len = -1){assert(pos < _size);if (len == -1 || pos + len > _size){_str[pos] = '\0';_size = pos;}else{size_t end = pos + len;while (end <= _size){_str[pos++] = _str[end++];}_size -= len;}}

pos表示删除的起始位置,len表示删除的字符串的长度,len设置成缺省参数,默认为最大值,即pos位置后面的字符全删,当pos+len大于字符串长度时也是全删。全删很简单,只要将pos位置赋值为'\0'就可以了。此外就是删除内部的子串了,定义一个变量end用于标记要删除的子串的末尾,将end后面的字符依次覆盖到pos后面的字符处,即可完成删除操作。

6.查找字符或子串

string 类中的 find 函数用于在字符串中搜索子字符串或字符,并返回第一次出现的位置:

        //找一个字符size_t find(char ch, size_t pos = 0){for (size_t i = pos; i < _size; i++){if (_str[i] == ch){return i;}}return -1;}//找一个字符串size_t find(const char* str, size_t pos = 0){const char* ptr = strstr(_str,str);if (ptr){return ptr - _str;}else{return -1;}}

查找操作很容易实现,只需要对字符串进行遍历,需要说明的是查找字符串操作时用到的 strstr 函数:C 标准库函数 strstr 在字符串 _str 中查找第一次出现的子字符串 strstrstr 返回一个指向匹配子字符串的指针,如果未找到匹配项,则返回 nullptr。

7.获取子串

string 类中,substr 函数用于提取字符串的子串:

		//取子串string substr(size_t pos = 0, size_t len = -1){assert(pos <= _size);size_t n = len;if (n == -1 || pos + n > _size){n = _size - pos;}string tmp;tmp.reserve(n);for (size_t i = pos; i < pos + n; i++){tmp += _str[i];}return tmp;}

pos表示子串的首元素位置,len表示子串长度,len同样设置成缺省参数,缺省值为最大值,即取的是pos后面的全部字符组成的子串。由于返回值类型是string类,所以我们需要声明一个tmp对象,用于存放子串的副本,用重载后的+=操作符即可实现子串的复制。

三、完整代码

#pragma once
#include<iostream>
#include<cassert>
using namespace std;
namespace Mystd
{class string{public:string(const char* str = "") //全缺省,常量字符串末尾默认'\0':_size(strlen(str)),_capacity(_size),_str(new char[_capacity + 1]){strcpy(_str, str);}string(const string& s){_str = new char[s._capacity + 1];strcpy(_str, s._str);_size = s._size;_capacity = s._capacity;}~string(){delete[] _str;_str = nullptr;_size = _capacity = 0;}const char* c_str() const //const关键字进行函数重载,表示const对象也可以调用,不加则不行{return _str;}size_t size() const{return _size;}char& operator[](size_t pos) //引用返回:返回值出了作用域任然存在,可读可写{assert(pos < _size);return _str[pos];}const char& operator[](size_t pos) const //const对象调用这个,只读{assert(pos < _size);return _str[pos];}//迭代器typedef char* iterator;typedef const char* const_iterator;iterator begin(){return _str;}iterator end(){return _str + _size;} //实现了迭代器也就实现了范围forconst_iterator begin() const{return _str;}const_iterator end() const{return _str + _size;} //实现了迭代器也就实现了范围for//扩容void reserve(size_t n){if (n > _capacity){char* tmp = new char[n + 1];strcpy(tmp, _str);delete[] _str;_str = tmp;//可以直接指针复制,令两者指向同一块空间_capacity = n;}}//插入字符void push_back(char ch){if (_size == _capacity){//2倍扩容reserve(_capacity == 0 ? 4 : _capacity * 2);}_str[_size] = ch;++_size;_str[_size] = '\0';}//插入字符串void append(const char* str){size_t len = strlen(str);if (_size + len > _capacity){//至少扩容到_size+lenreserve(_size + len);}strcpy(_str + _size, str);_size += len;}string& operator+=(char ch){push_back(ch);return *this;}string& operator+=(const char* str){append(str);return *this;}void insert(size_t pos, size_t n, char ch){assert(pos <= _size);if (_size + n < _capacity){//至少扩容到_size+nreserve(_size + n);}//挪动数据size_t end = _size;while (end >= pos && end != -1) //若pos为0呢?end!=-1{_str[end + n] = _str[end];--end;}for (size_t i = 0; i < n; i++){_str[pos + i] = ch;}_size += n;}void insert(size_t pos, const char* str){assert(pos <= _size);size_t len = strlen(str);if (_size + len < _capacity){//至少扩容到_size+nreserve(_size + len);}//挪动数据size_t end = _size;while (end >= pos && end != -1) //若pos为0呢?end!=-1{_str[end + len] = _str[end];--end;}for (size_t i = 0; i < len; i++){_str[pos + i] = str[i];}_size += len;}void erase(size_t pos, size_t len = -1){assert(pos < _size);if (len == -1 || pos + len > _size){_str[pos] = '\0';_size = pos;}else{size_t end = pos + len;while (end <= _size){_str[pos++] = _str[end++];}_size -= len;}}//找一个字符size_t find(char ch, size_t pos = 0){for (size_t i = pos; i < _size; i++){if (_str[i] == ch){return i;}}return -1;}//找一个字符串size_t find(const char* str, size_t pos = 0){const char* ptr = strstr(_str,str);if (ptr){return ptr - _str;}else{return -1;}}//取子串string substr(size_t pos = 0, size_t len = -1){assert(pos <= _size);size_t n = len;if (n == -1 || pos + n > _size){n = _size - pos;}string tmp;tmp.reserve(n);for (size_t i = pos; i < pos + n; i++){tmp += _str[i];}return tmp;}private:char* _str;size_t _size;size_t _capacity;static size_t npos;};size_t Mystd::string::npos = -1;
}

四、补充

        前面说到过:在C++中,对于无符号整数类型,-1 不是一个负数,而是一个非常大的正整数。这是由于无符号整数类型不能表示负数,因此用有符号整数的-1表示无符号整数时,会被解释为该无符号整数的最大可能值。因此我在处理一些返回值情况时,例如查找操作时,没找到指定字符则返回-1这可能导致问题,因为 size_t 是一个无符号整数类型,而 -1 是有符号整数。在 C++ 中,无符号整数和有符号整数之间的比较可能导致一些不直观的行为。

        所以最好用std::string::npos来表示-1(最大可能值)的情况。npos需设置成静态成员变量:

namespace Mystd
{class string{public://...private:char* _str;size_t _size;size_t _capacity;static size_t npos;};size_t Mystd::string::npos = -1;
}

写文不易,望多多支持~~

这篇关于【C++】理解string类的核心理念(实现一个自己的string类)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/518310

相关文章

SpringBoot3实现Gzip压缩优化的技术指南

《SpringBoot3实现Gzip压缩优化的技术指南》随着Web应用的用户量和数据量增加,网络带宽和页面加载速度逐渐成为瓶颈,为了减少数据传输量,提高用户体验,我们可以使用Gzip压缩HTTP响应,... 目录1、简述2、配置2.1 添加依赖2.2 配置 Gzip 压缩3、服务端应用4、前端应用4.1 N

SpringBoot实现数据库读写分离的3种方法小结

《SpringBoot实现数据库读写分离的3种方法小结》为了提高系统的读写性能和可用性,读写分离是一种经典的数据库架构模式,在SpringBoot应用中,有多种方式可以实现数据库读写分离,本文将介绍三... 目录一、数据库读写分离概述二、方案一:基于AbstractRoutingDataSource实现动态

Python FastAPI+Celery+RabbitMQ实现分布式图片水印处理系统

《PythonFastAPI+Celery+RabbitMQ实现分布式图片水印处理系统》这篇文章主要为大家详细介绍了PythonFastAPI如何结合Celery以及RabbitMQ实现简单的分布式... 实现思路FastAPI 服务器Celery 任务队列RabbitMQ 作为消息代理定时任务处理完整

Java枚举类实现Key-Value映射的多种实现方式

《Java枚举类实现Key-Value映射的多种实现方式》在Java开发中,枚举(Enum)是一种特殊的类,本文将详细介绍Java枚举类实现key-value映射的多种方式,有需要的小伙伴可以根据需要... 目录前言一、基础实现方式1.1 为枚举添加属性和构造方法二、http://www.cppcns.co

使用Python实现快速搭建本地HTTP服务器

《使用Python实现快速搭建本地HTTP服务器》:本文主要介绍如何使用Python快速搭建本地HTTP服务器,轻松实现一键HTTP文件共享,同时结合二维码技术,让访问更简单,感兴趣的小伙伴可以了... 目录1. 概述2. 快速搭建 HTTP 文件共享服务2.1 核心思路2.2 代码实现2.3 代码解读3.

Java中的String.valueOf()和toString()方法区别小结

《Java中的String.valueOf()和toString()方法区别小结》字符串操作是开发者日常编程任务中不可或缺的一部分,转换为字符串是一种常见需求,其中最常见的就是String.value... 目录String.valueOf()方法方法定义方法实现使用示例使用场景toString()方法方法

MySQL双主搭建+keepalived高可用的实现

《MySQL双主搭建+keepalived高可用的实现》本文主要介绍了MySQL双主搭建+keepalived高可用的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,... 目录一、测试环境准备二、主从搭建1.创建复制用户2.创建复制关系3.开启复制,确认复制是否成功4.同

Java实现文件图片的预览和下载功能

《Java实现文件图片的预览和下载功能》这篇文章主要为大家详细介绍了如何使用Java实现文件图片的预览和下载功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... Java实现文件(图片)的预览和下载 @ApiOperation("访问文件") @GetMapping("

C#数据结构之字符串(string)详解

《C#数据结构之字符串(string)详解》:本文主要介绍C#数据结构之字符串(string),具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录转义字符序列字符串的创建字符串的声明null字符串与空字符串重复单字符字符串的构造字符串的属性和常用方法属性常用方法总结摘

使用Sentinel自定义返回和实现区分来源方式

《使用Sentinel自定义返回和实现区分来源方式》:本文主要介绍使用Sentinel自定义返回和实现区分来源方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Sentinel自定义返回和实现区分来源1. 自定义错误返回2. 实现区分来源总结Sentinel自定