facenet 人脸识别构建和开发

2023-12-21 00:32

本文主要是介绍facenet 人脸识别构建和开发,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1. 开发环境

OS: ubuntu16.04
tensorflow版本:1.12.0
python版本: 3.6.7

2. 下载源码到本地

facenet官方github: https://github.com/davidsandberg/facenet.git

git clone https://github.com/davidsandberg/facenet.git

在requirements.txt文件看到要安装相关的依赖库,自己用pip指令安装一下就好了

tensorflow==1.14.0
scipy
scikit-learn
opencv-python
h5py
matplotlib
Pillow
requests
psutil

3. 下载LFW数据集

下载地址:http://vis-www.cs.umass.edu/lfw/

下载步骤:->Menu->Download->All images as gzipped tar file

把下载的压缩包放在 facenet/data/lfw_data 目录下,然后进行解压。

  • 对LFW图片预处理

lfw的图片原图尺寸为 250*250,我们要修改图片尺寸,使其大小和预训练模型的图片输入尺寸一致,即160*160,转换后的数据集存储在 facenet/data/lfw_data/lfw_160文件夹内。

  • 修改图片尺寸

align_dataset_mtcnn.py 会对dataset的图片进行人脸检测,进一步细化人脸图片,然后再把人脸图片尺寸修改为160×160的尺寸。

进入到facenet/src 目录下,把align_dataset_mtcnn.py 文件拷贝到src目录:

cd facenet/src
cp -i align/align_dataset_mtcnn.py ./
python align_dataset_mtcnn.py ../data/lfw_data/lfw ../data/lfw_data/lfw_160 --image_size 160 --margin 32 --random_order --gpu_memory_fraction 0.25

打印如下表示成功。

[外链图片转存失败(img-RQVgA6oy-1566983772469)(https://pic1.xuehuaimg.com/proxy/csdn/https://img-blog.csdnimg.cn/20190228181338621.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3UwMTI1MDU2MTc=,size_16,color_FFFFFF,t_70)]

4. 下载Google预训练的网络模型

下载地址 https://github.com/davidsandberg/facenet ,可以看到有两个基于不同的dataset预训练好的模型。这里我下载的是VGGFace2数据集的模型,并把模型放到facenet/models目录下,然后解压。

[外链图片转存失败(img-0Kf0rcvk-1566983772470)(https://pic1.xuehuaimg.com/proxy/csdn/https://img-blog.csdnimg.cn/20190228182209889.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3UwMTI1MDU2MTc=,size_16,color_FFFFFF,t_70)]

5. 预训练模型准确率测试

使用预训练模型进行测试:

python src/validate_on_lfw.py data/lfw_data/lfw_160/ models/20180402-114759/

由于我使用的tf版本的原因,我使用的是 tf1.12版本的, 作者的预训练模型是在tf 1.7版本训练的,所以在导入graph时会出错。出现如下错误:

WARNING:tensorflow:From /usr/local/lib/python3.6/dist-packages/tensorflow/python/training/input.py:734: add_queue_runner (from tensorflow.python.training.queue_runner_impl) is deprecated and will be removed in a future version.
Instructions for updating:
To construct input pipelines, use the tf.data module.
Model directory: models/20180402-114759/
Metagraph file: model-20180402-114759.meta
Checkpoint file: model-20180402-114759.ckpt-275
2019-02-28 19:54:02.009422: W tensorflow/core/graph/graph_constructor.cc:1265] Importing a graph with a lower producer version 24 into an existing graph with producer version 27. Shape inference will have run different parts of the graph with different producer versions.
Traceback (most recent call last):
File “src/validate_on_lfw.py”, line 164, in
main(parse_arguments(sys.argv[1:]))
File “src/validate_on_lfw.py”, line 73, in main
facenet.load_model(args.model, input_map=input_map)
File “/home/liguiyuan/study/deep_learning/project/facenet/src/facenet.py”, line 381, in load_model
saver = tf.train.import_meta_graph(os.path.join(model_exp, meta_file), input_map=input_map)
File “/usr/local/lib/python3.6/dist-packages/tensorflow/python/training/saver.py”, line 1674, in import_meta_graph
meta_graph_or_file, clear_devices, import_scope, **kwargs)[0]

KeyError: “The name ‘decode_image/cond_jpeg/is_png’ refers to an Operation not in the graph.”

解决方法:

1.把Tensorflow换为1.7版本的;

2.在facenet.py代码中找到create_input_pipeline 再添加一行语句 with tf.name_scope(“tempscope”):就可以完美解决(貌似Tensorflow 1.10及以上版本才修复这个bug)。

[外链图片转存失败(img-AN7KuGeB-1566983772470)(https://pic1.xuehuaimg.com/proxy/csdn/https://img-blog.csdnimg.cn/20190228203353274.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3UwMTI1MDU2MTc=,size_16,color_FFFFFF,t_70)]

改好之后, 再重新执行python代码。准确率达到了 0.98500±0.00658,打印如下:

[外链图片转存失败(img-bE7Vd1ZA-1566983772471)(https://pic1.xuehuaimg.com/proxy/csdn/https://img-blog.csdnimg.cn/20190228204156658.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3UwMTI1MDU2MTc=,size_16,color_FFFFFF,t_70)]

6. 比较两张图片的距离

执行以下命令:

python src/compare.py models/20180402-114759/20180402-114759.pb data/images/Anthony_Hopkins_0001.jpg data/images/Anthony_Hopkins_0002.jpg

又出现了错误:

2019-03-01 15:53:40.632821: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1432] Found device 0 with properties:
name: GeForce GTX 1060 major: 6 minor: 1 memoryClockRate(GHz): 1.6705
pciBusID: 0000:01:00.0
totalMemory: 5.94GiB freeMemory: 5.50GiB
2019-03-01 15:53:40.632855: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1511] Adding visible gpu devices: 0
2019-03-01 15:53:40.838198: I tensorflow/core/common_runtime/gpu/gpu_device.cc:982] Device interconnect StreamExecutor with strength 1 edge matrix:
2019-03-01 15:53:40.838230: I tensorflow/core/common_runtime/gpu/gpu_device.cc:988] 0
2019-03-01 15:53:40.838261: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1001] 0: N
2019-03-01 15:53:40.838410: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1115] Created TensorFlow device (/job:localhost/replica:0/task:0/device:GPU:0 with 6078 MB memory) -> physical GPU (device: 0, name: GeForce GTX 1060, pci bus id: 0000:01:00.0, compute capability: 6.1)
2019-03-01 15:53:40.934468: E tensorflow/stream_executor/cuda/cuda_driver.cc:806] failed to allocate 5.94G (6373572608 bytes) from device: CUDA_ERROR_OUT_OF_MEMORY: out of memory
2019-03-01 15:53:41.996521: E tensorflow/stream_executor/cuda/cuda_dnn.cc:373] Could not create cudnn handle: CUDNN_STATUS_INTERNAL_ERROR

这是申请GPU内存失败了,可以通过设定GPU的配置参数来解决。在compare.py文件中把GPU的使用率从1.0改为0.7:

parser.add_argument('--gpu_memory_fraction', type=float,help='Upper bound on the amount of GPU memory that will be used by the process.', default=1.0)# 该为:parser.add_argument('--gpu_memory_fraction', type=float,help='Upper bound on the amount of GPU memory that will be used by the process.', default=0.7)

这次成功了!得到的值为0.8396,这个值代表的是欧氏距离,用来判别这两张图片是否为同一个人。两张人脸图片越相似,空间距离越小;差别越大,则空间距离越大。

在这里插入图片描述

参考教程:

http://www.cnblogs.com/gmhappy/p/9472388.html

这篇关于facenet 人脸识别构建和开发的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/518078

相关文章

这15个Vue指令,让你的项目开发爽到爆

1. V-Hotkey 仓库地址: github.com/Dafrok/v-ho… Demo: 戳这里 https://dafrok.github.io/v-hotkey 安装: npm install --save v-hotkey 这个指令可以给组件绑定一个或多个快捷键。你想要通过按下 Escape 键后隐藏某个组件,按住 Control 和回车键再显示它吗?小菜一碟: <template

Hadoop企业开发案例调优场景

需求 (1)需求:从1G数据中,统计每个单词出现次数。服务器3台,每台配置4G内存,4核CPU,4线程。 (2)需求分析: 1G / 128m = 8个MapTask;1个ReduceTask;1个mrAppMaster 平均每个节点运行10个 / 3台 ≈ 3个任务(4    3    3) HDFS参数调优 (1)修改:hadoop-env.sh export HDFS_NAMENOD

嵌入式QT开发:构建高效智能的嵌入式系统

摘要: 本文深入探讨了嵌入式 QT 相关的各个方面。从 QT 框架的基础架构和核心概念出发,详细阐述了其在嵌入式环境中的优势与特点。文中分析了嵌入式 QT 的开发环境搭建过程,包括交叉编译工具链的配置等关键步骤。进一步探讨了嵌入式 QT 的界面设计与开发,涵盖了从基本控件的使用到复杂界面布局的构建。同时也深入研究了信号与槽机制在嵌入式系统中的应用,以及嵌入式 QT 与硬件设备的交互,包括输入输出设

OpenHarmony鸿蒙开发( Beta5.0)无感配网详解

1、简介 无感配网是指在设备联网过程中无需输入热点相关账号信息,即可快速实现设备配网,是一种兼顾高效性、可靠性和安全性的配网方式。 2、配网原理 2.1 通信原理 手机和智能设备之间的信息传递,利用特有的NAN协议实现。利用手机和智能设备之间的WiFi 感知订阅、发布能力,实现了数字管家应用和设备之间的发现。在完成设备间的认证和响应后,即可发送相关配网数据。同时还支持与常规Sof

活用c4d官方开发文档查询代码

当你问AI助手比如豆包,如何用python禁止掉xpresso标签时候,它会提示到 这时候要用到两个东西。https://developers.maxon.net/论坛搜索和开发文档 比如这里我就在官方找到正确的id描述 然后我就把参数标签换过来

Retrieval-based-Voice-Conversion-WebUI模型构建指南

一、模型介绍 Retrieval-based-Voice-Conversion-WebUI(简称 RVC)模型是一个基于 VITS(Variational Inference with adversarial learning for end-to-end Text-to-Speech)的简单易用的语音转换框架。 具有以下特点 简单易用:RVC 模型通过简单易用的网页界面,使得用户无需深入了

Linux_kernel驱动开发11

一、改回nfs方式挂载根文件系统         在产品将要上线之前,需要制作不同类型格式的根文件系统         在产品研发阶段,我们还是需要使用nfs的方式挂载根文件系统         优点:可以直接在上位机中修改文件系统内容,延长EMMC的寿命         【1】重启上位机nfs服务         sudo service nfs-kernel-server resta

【区块链 + 人才服务】区块链集成开发平台 | FISCO BCOS应用案例

随着区块链技术的快速发展,越来越多的企业开始将其应用于实际业务中。然而,区块链技术的专业性使得其集成开发成为一项挑战。针对此,广东中创智慧科技有限公司基于国产开源联盟链 FISCO BCOS 推出了区块链集成开发平台。该平台基于区块链技术,提供一套全面的区块链开发工具和开发环境,支持开发者快速开发和部署区块链应用。此外,该平台还可以提供一套全面的区块链开发教程和文档,帮助开发者快速上手区块链开发。

Vue3项目开发——新闻发布管理系统(六)

文章目录 八、首页设计开发1、页面设计2、登录访问拦截实现3、用户基本信息显示①封装用户基本信息获取接口②用户基本信息存储③用户基本信息调用④用户基本信息动态渲染 4、退出功能实现①注册点击事件②添加退出功能③数据清理 5、代码下载 八、首页设计开发 登录成功后,系统就进入了首页。接下来,也就进行首页的开发了。 1、页面设计 系统页面主要分为三部分,左侧为系统的菜单栏,右侧

v0.dev快速开发

探索v0.dev:次世代开发者之利器 今之技艺日新月异,开发者之工具亦随之进步不辍。v0.dev者,新兴之开发者利器也,迅速引起众多开发者之瞩目。本文将引汝探究v0.dev之基本功能与优势,助汝速速上手,提升开发之效率。 何谓v0.dev? v0.dev者,现代化之开发者工具也,旨在简化并加速软件开发之过程。其集多种功能于一体,助开发者高效编写、测试及部署代码。无论汝为前端开发者、后端开发者