Observability:使用 OpenTelemetry 对 Node.js 应用程序进行自动检测

本文主要是介绍Observability:使用 OpenTelemetry 对 Node.js 应用程序进行自动检测,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

作者:Bahubali Shetti

DevOps 和 SRE 团队正在改变软件开发的流程。 DevOps 工程师专注于高效的软件应用程序和服务交付,而 SRE 团队是确保可靠性、可扩展性和性能的关键。 这些团队必须依赖全栈可观察性解决方案,使他们能够管理和监控系统,并确保问题在影响业务之前得到解决。

整个现代分布式应用程序堆栈的可观察性需要通常以仪表板的形式收集、处理和关联数据。 摄取所有系统数据需要跨堆栈、框架和提供程序安装代理,对于必须处理版本更改、兼容性问题和不随系统变化而扩展的专有代码的团队来说,这个过程可能具有挑战性且耗时。

得益于 OpenTelemetry (OTel),DevOps 和 SRE 团队现在拥有一种收集和发送数据的标准方法,该方法不依赖于专有代码,并且拥有大型社区支持,减少了供应商锁定。

在之前的博客中,我们还回顾了如何使用 OpenTelemetry 演示并将其连接到 Elastic®,以及 Elastic 与 OpenTelemetry 和 Kubernetes 的一些功能。

在本博客中,我们将展示如何通过我们名为 Elastiflix 的应用程序的 Node.js 服务来使用 OpenTelemetry 的自动检测,这有助于以简单的方式突出显示自动检测。

这样做的好处是不需要 otel-collector! 此设置使你能够根据最适合你业务的时间表,缓慢而轻松地将应用程序迁移到使用 Elastic 的 OTel。

应用程序、先决条件和配置

我们在这个博客中使用的应用程序称为 Elastiflix,一个电影流应用程序。 它由多个用 .NET、NodeJS、Go 和 Python 编写的微服务组成。

在我们检测示例应用程序之前,我们首先需要了解 Elastic 如何接收遥测数据。

Elastic Observability 的所有 APM 功能均可通过 OTel 数据使用。 其中一些包括:

  • 服务地图
  • 服务详细信息(延迟、吞吐量、失败的 transactions)
  • 服务之间的依赖关系、分布式追踪
  • Transactions(跟踪)
  • 机器学习 (ML) 相关性
  • 日志相关性

除了 Elastic 的 APM 和遥测数据的统一视图之外,你还可以使用 Elastic 强大的机器学习功能来减少分析,并发出警报以帮助降低 MTTR。

先决条件

  • Elastic Cloud 帐户 — 立即注册
  • 克隆 Elastiflix 演示应用程序,或您自己的 Node.js 应用程序
  • 对 Docker 的基本了解 — 可能安装 Docker Desktop
  • 对 Node.js 的基本了解

查看示例源代码

完整的源代码,包括本博客中使用的 Dockerfile,可以在 GitHub 上找到。 该存储库还包含相同的应用程序,但没有检测。 这使您可以比较每个文件并查看差异。

以下步骤将向你展示如何实现此应用程序并在命令行或 Docker 中运行它。 如果你对更完整的 OTel 示例感兴趣,请查看此处的 docker-compose 文件,它将显示完整的项目。

分步指南

步骤 0:登录你的 Elastic Cloud 帐户

本博客假设你有 Elastic Cloud 帐户 - 如果没有,请按照说明开始使用 Elastic Cloud。

步骤 1:为 Node.js 服务配置自动检测

我们将通过 Elastiflix 演示应用程序中的 Node.js 服务使用自动检测。

我们将使用 Elastiflix 的以下服务:

Elastiflix/node-server-otel-manual

根据 OpenTelemetry JavaScript 文档和 @open-telemetry/auto-instrumentions-node 文档,你只需使用 npm 安装适当的节点包即可。

npm install --save @opentelemetry/api
npm install --save @opentelemetry/auto-instrumentations-node

如果你在命令行上运行 Node.js 服务,那么以下是如何使用 Node.js 运行自动检测。

node --require '@opentelemetry/auto-instrumentations-node/register' app.js

对于我们的应用程序,我们将其作为 Dockerfile 的一部分来执行。

Dockerfile

FROM node:14WORKDIR /appCOPY ["package.json", "./"]
RUN ls
RUN npm install --production
COPY . .RUN npm install --save @opentelemetry/api
RUN npm install --save @opentelemetry/auto-instrumentations-nodeEXPOSE 3001CMD ["node", "--require", "@opentelemetry/auto-instrumentations-node/register", "index.js"]

步骤 2:使用环境变量运行 Docker 镜像

按照 OTEL 文档中的规定,我们将使用环境变量并传入配置值以使其能够与 Elastic Observability 的 APM 服务器连接。

由于 Elastic 原生接受 OTLP,因此我们只需要提供 OTEL Exporter 需要发送数据的端点和身份验证,以及一些其他环境变量。

获取 Elastic Cloud 变量

你可以从路径 /app/home#/tutorial/apm 下的 Kibana® 复制端点和令牌。

你将需要复制以下环境变量:

OTEL_EXPORTER_OTLP_ENDPOINT
OTEL_EXPORTER_OTLP_HEADERS

创建 image

docker build -t  node-otel-auto-image .

运行 image

docker run \    -e OTEL_EXPORTER_OTLP_ENDPOINT="<REPLACE WITH OTEL_EXPORTER_OTLP_ENDPOINT>" \-e OTEL_EXPORTER_OTLP_HEADERS="Authorization=Bearer <REPLACE WITH TOKEN>" \-e OTEL_RESOURCE_ATTRIBUTES="service.version=1.0,deployment.environment=production" \-e OTEL_SERVICE_NAME="node-server-otel-auto" \-p 3001:3001 \node-server-otel-auto

你现在可以发出一些请求来生成跟踪数据。 请注意,这些请求预计会返回错误,因为此服务依赖于你的计算机上可能未运行的某些下游服务。

curl localhost:3001/api/login
curl localhost:3001/api/favorites# or alternatively issue a request every secondwhile true; do curl "localhost:3001/api/favorites"; sleep 1; done;

步骤 3:探索 Elastic APM 中的跟踪、指标和日志

浏览 Elastic APM 中的服务部分,你将看到显示的节点服务。

单击 node-server-otel-auto 服务,你可以看到它正在使用 OpenTelemetry 摄取遥测数据。

总结

在这篇博客中,我们讨论了以下内容:

  • 如何使用 OpenTelemetry 自动检测 Node.js
  • 使用 Dockerfile 中的标准命令,可以高效地完成自动检测,并且无需在多个位置添加代码,从而实现可管理性

由于 Elastic 可以支持多种摄取数据的方法,无论是使用开源 OpenTelemetry 的自动检测还是使用其本机 APM 代理进行手动检测,你都可以先关注一些应用程序,然后使用稍后以最适合你的业务需求的方式在你的应用程序中打开遥测。

这篇关于Observability:使用 OpenTelemetry 对 Node.js 应用程序进行自动检测的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/515902

相关文章

JS常用组件收集

收集了一些平时遇到的前端比较优秀的组件,方便以后开发的时候查找!!! 函数工具: Lodash 页面固定: stickUp、jQuery.Pin 轮播: unslider、swiper 开关: switch 复选框: icheck 气泡: grumble 隐藏元素: Headroom

中文分词jieba库的使用与实景应用(一)

知识星球:https://articles.zsxq.com/id_fxvgc803qmr2.html 目录 一.定义: 精确模式(默认模式): 全模式: 搜索引擎模式: paddle 模式(基于深度学习的分词模式): 二 自定义词典 三.文本解析   调整词出现的频率 四. 关键词提取 A. 基于TF-IDF算法的关键词提取 B. 基于TextRank算法的关键词提取

使用SecondaryNameNode恢复NameNode的数据

1)需求: NameNode进程挂了并且存储的数据也丢失了,如何恢复NameNode 此种方式恢复的数据可能存在小部分数据的丢失。 2)故障模拟 (1)kill -9 NameNode进程 [lytfly@hadoop102 current]$ kill -9 19886 (2)删除NameNode存储的数据(/opt/module/hadoop-3.1.4/data/tmp/dfs/na

Hadoop数据压缩使用介绍

一、压缩原则 (1)运算密集型的Job,少用压缩 (2)IO密集型的Job,多用压缩 二、压缩算法比较 三、压缩位置选择 四、压缩参数配置 1)为了支持多种压缩/解压缩算法,Hadoop引入了编码/解码器 2)要在Hadoop中启用压缩,可以配置如下参数

Makefile简明使用教程

文章目录 规则makefile文件的基本语法:加在命令前的特殊符号:.PHONY伪目标: Makefilev1 直观写法v2 加上中间过程v3 伪目标v4 变量 make 选项-f-n-C Make 是一种流行的构建工具,常用于将源代码转换成可执行文件或者其他形式的输出文件(如库文件、文档等)。Make 可以自动化地执行编译、链接等一系列操作。 规则 makefile文件

使用opencv优化图片(画面变清晰)

文章目录 需求影响照片清晰度的因素 实现降噪测试代码 锐化空间锐化Unsharp Masking频率域锐化对比测试 对比度增强常用算法对比测试 需求 对图像进行优化,使其看起来更清晰,同时保持尺寸不变,通常涉及到图像处理技术如锐化、降噪、对比度增强等 影响照片清晰度的因素 影响照片清晰度的因素有很多,主要可以从以下几个方面来分析 1. 拍摄设备 相机传感器:相机传

【Prometheus】PromQL向量匹配实现不同标签的向量数据进行运算

✨✨ 欢迎大家来到景天科技苑✨✨ 🎈🎈 养成好习惯,先赞后看哦~🎈🎈 🏆 作者简介:景天科技苑 🏆《头衔》:大厂架构师,华为云开发者社区专家博主,阿里云开发者社区专家博主,CSDN全栈领域优质创作者,掘金优秀博主,51CTO博客专家等。 🏆《博客》:Python全栈,前后端开发,小程序开发,人工智能,js逆向,App逆向,网络系统安全,数据分析,Django,fastapi

在JS中的设计模式的单例模式、策略模式、代理模式、原型模式浅讲

1. 单例模式(Singleton Pattern) 确保一个类只有一个实例,并提供一个全局访问点。 示例代码: class Singleton {constructor() {if (Singleton.instance) {return Singleton.instance;}Singleton.instance = this;this.data = [];}addData(value)

pdfmake生成pdf的使用

实际项目中有时会有根据填写的表单数据或者其他格式的数据,将数据自动填充到pdf文件中根据固定模板生成pdf文件的需求 文章目录 利用pdfmake生成pdf文件1.下载安装pdfmake第三方包2.封装生成pdf文件的共用配置3.生成pdf文件的文件模板内容4.调用方法生成pdf 利用pdfmake生成pdf文件 1.下载安装pdfmake第三方包 npm i pdfma

零基础学习Redis(10) -- zset类型命令使用

zset是有序集合,内部除了存储元素外,还会存储一个score,存储在zset中的元素会按照score的大小升序排列,不同元素的score可以重复,score相同的元素会按照元素的字典序排列。 1. zset常用命令 1.1 zadd  zadd key [NX | XX] [GT | LT]   [CH] [INCR] score member [score member ...]