《十堂课学习 Flink》第五章:Table API 以及 Flink SQL 入门

2023-12-20 10:30

本文主要是介绍《十堂课学习 Flink》第五章:Table API 以及 Flink SQL 入门,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

第四章中介绍了 DataStream API 以及 DataSet API 的入门案例,本章开始介绍 Table API 以及基于此的高层应用 Flink SQL 的基础。

5.1 Flink Table & SQL 基础知识

Flink 提供了两个关系API——Table API 和 SQL——用于统一的流和批处理。Table API 是一种针对Java、Scala和Python的语言集成查询API,它允许以非常直观的方式组合来自关系运算符(如选择、筛选和联接)的查询。Flink的SQL支持基于Apache Calcite,后者实现了SQL标准。无论输入是连续的(流式)还是有界的(批处理),在任一接口中指定的查询都具有相同的语义并指定相同的结果。

Table API和SQL接口与彼此以及Flink的DataStream API无缝集成。您可以轻松地在所有API和基于它们构建的库之间切换。

SQL是数据分析中使用最广泛的语言。Flink的Table API和SQL使用户能够用更少的时间和精力定义高效的流分析应用程序。此外,Flink Table API和SQL得到了有效的优化,它集成了大量的查询优化和优化的运算符实现。但并非所有优化都是默认启用的,因此对于某些工作负载,可以通过启用某些选项来提高性能。

5.2 DataStream / DataSet API & Table API & SQL 之间的关系

如下图所示,现在从下往上我们逐层介绍。
在这里插入图片描述

  • 最低级别的抽象只是提供有状态和及时的流处理。它通过Process Function嵌入到DataStream API中。它允许用户自由处理来自一个或多个流的事件,并提供一致的容错状态。此外,用户可以注册事件时间和处理时间回调,使程序能够实现复杂的计算。
  • 在实践中,许多应用程序不需要上面描述的低级抽象,而是可以根据核心API进行编程:DataStream API(有界/无界流)。这些流畅的API为数据处理提供了通用的构建块,如各种形式的用户指定的转换、联接、聚合、窗口、状态等。在这些API中处理的数据类型在各自的编程语言中表示为类。
    低级别的Process Function与DataStream API集成在一起,从而可以按需使用低级别的抽象。数据集API在有界数据集上提供了额外的基元,如循环/迭代。
  • Table API是一个以表为中心的声明性DSL,表可以是动态变化的表(当表示流时)。Table API遵循(扩展的)关系模型:表附加了一个模式(类似于关系数据库中的表),API提供了类似的操作,如选择、项目、联接、分组传递、聚合等。Table API程序以声明的方式定义了应该执行的逻辑操作,而不是确切地指定操作代码的外观。虽然Table API可以通过各种类型的用户定义函数进行扩展,但它的表达能力不如Core API,使用起来更简洁(编写的代码更少)。此外,Table API 程序还通过一个优化器,该优化器在执行之前应用优化规则。
    可以在表和数据流/数据集之间无缝转换,允许程序将表API与数据流和数据集API混合。
  • Flink提供的最高级别抽象是SQL。这种抽象在语义和表达上都类似于Table API,但将程序表示为SQL查询表达式。SQL抽象与Table API密切交互,SQL查询可以在Table API中定义的表上执行。

5.3 Flink Table API 添加依赖

在前面的例子中,我们已经添加了 flink-clients 核心依赖,现在使用Table API 时,需要额外添加两个依赖,如下所示:

<dependency><groupId>org.apache.flink</groupId><artifactId>flink-table-api-java-bridge_${scala.binary.version}</artifactId><version>${flink.version}</version>
</dependency>
<dependency><groupId>org.apache.flink</groupId><artifactId>flink-table-planner_${scala.binary.version}</artifactId><version>${flink.version}</version>
</dependency>

其中,${flink.version} 为 1.14.6 ,而 {scala.binary.version} 为 2.11。

5.4 Flink Table API / SQL 第一个例子 StreamSQLExample

这个例子大概可以理解为:总共两个订单,每个订单里包含三条记录,总共六条记录。形成一张表,然后根据订单中 product 字段进行 UNION 操作,并把最终结果打印。

import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.table.api.Table;
import org.apache.flink.table.api.bridge.java.StreamTableEnvironment;import java.util.Arrays;/*** 摘录自 flink 1.14.6 源码例子* @author Smileyan*/
public class StreamSQLExample {public static void main(String[] args) throws Exception {// set up the Java DataStream APIfinal StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();// set up the Java Table APIfinal StreamTableEnvironment tableEnv = StreamTableEnvironment.create(env);final DataStream<Order> orderA =env.fromCollection(Arrays.asList(new Order(1L, "beer", 3),new Order(1L, "diaper", 4),new Order(3L, "rubber", 2)));final DataStream<Order> orderB =env.fromCollection(Arrays.asList(new Order(2L, "pen", 3),new Order(2L, "rubber", 3),new Order(4L, "beer", 1)));// convert the first DataStream to a Table object// it will be used "inline" and is not registered in a catalogfinal Table tableA = tableEnv.fromDataStream(orderA);// convert the second DataStream and register it as a view// it will be accessible under a nametableEnv.createTemporaryView("TableB", orderB);// union the two tablesfinal Table result =tableEnv.sqlQuery("SELECT * FROM "+ tableA+ " WHERE amount > 2 UNION ALL "+ "SELECT * FROM TableB WHERE amount < 2");// convert the Table back to an insert-only DataStream of type `Order`tableEnv.toDataStream(result, Order.class).print();// after the table program is converted to a DataStream program,// we must use `env.execute()` to submit the jobenv.execute();}// *************************************************************************//     USER DATA TYPES// *************************************************************************/** Simple POJO. */public static class Order {public Long user;public String product;public int amount;// for POJO detection in DataStream APIpublic Order() {}// for structured type detection in Table APIpublic Order(Long user, String product, int amount) {this.user = user;this.product = product;this.amount = amount;}@Overridepublic String toString() {return "Order{"+ "user="+ user+ ", product='"+ product+ '\''+ ", amount="+ amount+ '}';}}
}

在这里插入图片描述

5.5 Flink Table API / SQL 第二个例子 WordCountSQLExample

这个例子更加简单,因为连 union 的操作都已经省去了,直接从一个表中进行SELECT。

import org.apache.flink.table.api.EnvironmentSettings;
import org.apache.flink.table.api.TableEnvironment;/**** @author Smileyan*/
public class WordCountSQLExample {public static void main(String[] args) {// set up the Table APIfinal EnvironmentSettings settings = EnvironmentSettings.newInstance().inBatchMode().build();final TableEnvironment tableEnv = TableEnvironment.create(settings);// execute a Flink SQL job and print the result locallytableEnv.executeSql(// define the aggregation"SELECT word, SUM(frequency) AS `count`\n"// read from an artificial fixed-size table with rows and columns+ "FROM (\n"+ "  VALUES ('Hello', 1), ('Ciao', 1), ('Hello', 2)\n"+ ")\n"// name the table and its columns+ "AS WordTable(word, frequency)\n"// group for aggregation+ "GROUP BY word").print();}
}

在这里插入图片描述

5.6 参考资料

https://github.com/apache/flink/tree/release-1.14.6
https://nightlies.apache.org/flink/flink-docs-release-1.14/docs/concepts/overview/

5.7 总结

第四章介绍了DataStream API和DataSet API的入门案例,而第五章则开始介绍了Table API以及基于其上的高层应用Flink SQL的基础知识。

在5.1中,阐述了Flink提供的两个关系API——Table API和SQL,用于统一流和批处理。无论是处理连续的流数据还是有界的批处理数据,在这两个接口中指定的查询具有相同的语义和结果。Table API和SQL接口与DataStream API无缝集成,用户可以轻松在它们之间切换。

5.2详细描述了DataStream、DataSet、Table API以及SQL之间的关系。从最低级别的抽象开始,介绍了DataStream API的Process Function,然后是DataStream API和DataSet API的一般构建块,最后到以表为中心的声明性DSL——Table API。最高级别的抽象是SQL,与Table API密切交互,允许通过SQL查询表达式执行操作。

在5.3中,介绍了Flink Table API的添加依赖,以及相应的Maven配置。

最后,在5.4和5.5中给出了两个Flink Table API / SQL的例子。StreamSQLExample展示了使用Table API和SQL进行流处理的例子,而WordCountSQLExample则展示了一个简单的批处理Flink SQL作业。

总体而言,本章深入介绍了Flink的Table API和SQL,以及它们与DataStream和DataSet API的关系,为使用Flink进行流和批处理提供了全面的基础知识。

Smileyan
2023.12.18 23:14

这篇关于《十堂课学习 Flink》第五章:Table API 以及 Flink SQL 入门的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/515694

相关文章

数据库面试必备之MySQL中的乐观锁与悲观锁

《数据库面试必备之MySQL中的乐观锁与悲观锁》:本文主要介绍数据库面试必备之MySQL中乐观锁与悲观锁的相关资料,乐观锁适用于读多写少的场景,通过版本号检查避免冲突,而悲观锁适用于写多读少且对数... 目录一、引言二、乐观锁(一)原理(二)应用场景(三)示例代码三、悲观锁(一)原理(二)应用场景(三)示例

SQL表间关联查询实例详解

《SQL表间关联查询实例详解》本文主要讲解SQL语句中常用的表间关联查询方式,包括:左连接(leftjoin)、右连接(rightjoin)、全连接(fulljoin)、内连接(innerjoin)、... 目录简介样例准备左外连接右外连接全外连接内连接交叉连接自然连接简介本文主要讲解SQL语句中常用的表

SQL server配置管理器找不到如何打开它

《SQLserver配置管理器找不到如何打开它》最近遇到了SQLserver配置管理器打不开的问题,尝试在开始菜单栏搜SQLServerManager无果,于是将自己找到的方法总结分享给大家,对SQ... 目录方法一:桌面图标进入方法二:运行窗口进入方法三:查找文件路径方法四:检查 SQL Server 安

MySQL 中的 LIMIT 语句及基本用法

《MySQL中的LIMIT语句及基本用法》LIMIT语句用于限制查询返回的行数,常用于分页查询或取部分数据,提高查询效率,:本文主要介绍MySQL中的LIMIT语句,需要的朋友可以参考下... 目录mysql 中的 LIMIT 语句1. LIMIT 语法2. LIMIT 基本用法(1) 获取前 N 行数据(

springboot项目中常用的工具类和api详解

《springboot项目中常用的工具类和api详解》在SpringBoot项目中,开发者通常会依赖一些工具类和API来简化开发、提高效率,以下是一些常用的工具类及其典型应用场景,涵盖Spring原生... 目录1. Spring Framework 自带工具类(1) StringUtils(2) Coll

MySQL 分区与分库分表策略应用小结

《MySQL分区与分库分表策略应用小结》在大数据量、复杂查询和高并发的应用场景下,单一数据库往往难以满足性能和扩展性的要求,本文将详细介绍这两种策略的基本概念、实现方法及优缺点,并通过实际案例展示如... 目录mysql 分区与分库分表策略1. 数据库水平拆分的背景2. MySQL 分区策略2.1 分区概念

MySQL高级查询之JOIN、子查询、窗口函数实际案例

《MySQL高级查询之JOIN、子查询、窗口函数实际案例》:本文主要介绍MySQL高级查询之JOIN、子查询、窗口函数实际案例的相关资料,JOIN用于多表关联查询,子查询用于数据筛选和过滤,窗口函... 目录前言1. JOIN(连接查询)1.1 内连接(INNER JOIN)1.2 左连接(LEFT JOI

MySQL 中查询 VARCHAR 类型 JSON 数据的问题记录

《MySQL中查询VARCHAR类型JSON数据的问题记录》在数据库设计中,有时我们会将JSON数据存储在VARCHAR或TEXT类型字段中,本文将详细介绍如何在MySQL中有效查询存储为V... 目录一、问题背景二、mysql jsON 函数2.1 常用 JSON 函数三、查询示例3.1 基本查询3.2

MySQL中动态生成SQL语句去掉所有字段的空格的操作方法

《MySQL中动态生成SQL语句去掉所有字段的空格的操作方法》在数据库管理过程中,我们常常会遇到需要对表中字段进行清洗和整理的情况,本文将详细介绍如何在MySQL中动态生成SQL语句来去掉所有字段的空... 目录在mysql中动态生成SQL语句去掉所有字段的空格准备工作原理分析动态生成SQL语句在MySQL

MySQL中FIND_IN_SET函数与INSTR函数用法解析

《MySQL中FIND_IN_SET函数与INSTR函数用法解析》:本文主要介绍MySQL中FIND_IN_SET函数与INSTR函数用法解析,本文通过实例代码给大家介绍的非常详细,感兴趣的朋友一... 目录一、功能定义与语法1、FIND_IN_SET函数2、INSTR函数二、本质区别对比三、实际场景案例分