特质波动率python

2023-12-20 05:08
文章标签 python 波动 特质

本文主要是介绍特质波动率python,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

特质波动率

  • “特质波动率之谜”的介绍
  • 特质波动率的度量方法
  • Python代码
  • 相关文章
  • 获取代码

“特质波动率之谜”的介绍

风险与收益一直是金融学中形影不离的两个概念。经典的CAPM模型,只考虑了系统性风险,认为股票预期收益率只与市场风险溢价有关。直到1972年,Jensen,Black和Scholes对传统金融学理论提出了不同的看法,认为非系统性风险与股票收益率是存在一定的相关关系,并首次提出了特质波动率的概念。Merton曾从供需的角度来解释这两者之间的关系,认为投资者会对系统风险和非系统风险都要求进行一定的风险补偿,而这一解释也被大家广泛地接受与认可。

一般来讲,我们都认为风险与收益应该是正相关,即风险越高,收益率越高。但在2006年,Ang等人却得出了不一样的结论,他们借助Fama-French三因子模型却发现特质波动率与预期收益率之间的关系变为负相关关系。目前尚未有公认的理论可以解释这种异象,因此引起了剧烈的争论,而这一异象也被称为“特质波动率之谜”。

特质波动率的度量方法

在特质波动率的度量方面,我利用Fama-French三因子模型进行计算
有关三因子模型的介绍与代码在之前的文章有所讲解,读者们可见文末链接

首先,通过三因子模型,得到每日的残差,即ε
在这里插入图片描述
然后,计算残差的波动率,即当月残差标准差乘以当月总交易天数。
在这里插入图片描述
这样就得到我们所要的特质波动率了。

Python代码

Python实现的过程中,我们只需要使用pandas、statsmodels.formula.api两个包即可完成:

import pandas as pd
import statsmodels.formula.api as smf

首先,读取数据,我从锐思数据库中,下载了创业板中2015-2019年所有股票每日收益率、无风险收益率以及创业板每日的三因子:

Factors = pd.read_excel("F:\\公众号\\图文素材\\特质波动率\\Data.xlsx", sheetname = 0, header = 0)
Return = pd.read_excel("F:\\公众号\\图文素材\\特质波动率\\Data.xlsx", sheetname = 1, header = 0)
NoRisk = pd.read_excel("F:\\公众号\\图文素材\\特质波动率\\Data.xlsx", sheetname = 2, header = 0)

为了后续筛选日期方便,我们需要将“日期”的数据类型更改为日期型:

Factors['Date'] = pd.to_datetime(Factors['Date'])
Return['Date'] = pd.to_datetime(Return['Date'])
NoRisk['Date'] = pd.to_datetime(NoRisk['Date'])

通过pd.merge()将数据进行合并:

Data = pd.merge(pd.merge(Factors, Return, on = 'Date'), NoRisk, on = 'Date')

在这里插入图片描述
参数说明:
pd.merge(left, right, how=‘inner’, on=None, left_on=None, right_on=None,
left_index=False, right_index=False, sort=True,
suffixes=(’_x’, ‘_y’), copy=True, indicator=False,
validate=None)
1、left: 拼接的左侧DataFrame对象
2、right: 拼接的右侧DataFrame对象
3、on: 要加入的列或索引级别名称。 必须在左侧和右侧DataFrame对象中找到。 如果未传递且left_index和right_index为False,则DataFrame中的列的交集将被推断为连接键。
4、left_on:左侧DataFrame中的列或索引级别用作键。 可以是列名,索引级名称,也可以是长度等于DataFrame长度的数组。
5、right_on: 左侧DataFrame中的列或索引级别用作键。 可以是列名,索引级名称,也可以是长度等于DataFrame长度的数组。
6、left_index: 如果为True,则使用左侧DataFrame中的索引(行标签)作为其连接键。 对于具有MultiIndex(分层)的DataFrame,级别数必须与右侧DataFrame中的连接键数相匹配。
7、right_index: 与left_index功能相似。
8、how: One of ‘left’, ‘right’, ‘outer’, ‘inner’. 默认inner。inner是取交集,outer取并集。比如left:[‘A’,‘B’,‘C’];right[’'A,‘C’,‘D’];inner取交集的话,left中出现的A会和right中出现的买一个A进行匹配拼接,如果没有是B,在right中没有匹配到,则会丢失。'outer’取并集,出现的A会进行一一匹配,没有同时出现的会将缺失的部分添加缺失值。
9、sort: 按字典顺序通过连接键对结果DataFrame进行排序。 默认为True,设置为False将在很多情况下显着提高性能。
10、suffixes: 用于重叠列的字符串后缀元组。 默认为(‘x’,’ y’)。
11、copy: 始终从传递的DataFrame对象复制数据(默认为True),即使不需要重建索引也是如此。
12、indicator: 将一列添加到名为_merge的输出DataFrame,其中包含有关每行源的信息。 _merge是分类类型,并且对于其合并键仅出现在“左”DataFrame中的观察值,取得值为left_only,对于其合并键仅出现在“右”DataFrame中的观察值为right_only,并且如果在两者中都找到观察点的合并键,则为left_only。

然后从日期中提取年份和月份:
Data[‘Year’] = Data[‘Date’].dt.year
Data[‘Month’] = Data[‘Date’].dt.month
在这里插入图片描述
我们创建一个函数,用于提取某只股票某月下的数据:

def get_month_data(data, code, year, month):month_data = data[(data.Stkcd == code) & (data.Year == year) & (data.Month == month)]
return month_data

接下来,我们计算一下300001这只股票在2019年12月份的特质波动率。
首先,我们获得这只股票当月的数据:

example = get_month_data(Data, 300001, 2019, 12)

在这里插入图片描述
统计当月交易总天数:

N = len(example)

在这里插入图片描述
建立回归模型,并计算残差:

model = smf.ols('Dretnd - Nrrdaydt ~ RiskPremium + SMB + HML', data = example).fit()
predict = model.params['Intercept'] + model.params['RiskPremium']*example['RiskPremium'] + model.params['SMB']*example['SMB'] + model.params['HML']*example['HML']
residual = example['Dretnd'] – predict

在这里插入图片描述
接着,计算得出特质波动率:

IV = residual.std(ddof=1) * N

在这里插入图片描述
参数说明:
pd.std(ddof = 1)
该函数是pandas所带的标准差计算方法,默认按照无偏估计进行计算,即ddof = 1,即n-ddof。

最后,我们可以用循环语句进行遍历计算,并创建一个DataFrame进行储存和导出:
在这里插入图片描述

这篇关于特质波动率python的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/514852

相关文章

Python将博客内容html导出为Markdown格式

《Python将博客内容html导出为Markdown格式》Python将博客内容html导出为Markdown格式,通过博客url地址抓取文章,分析并提取出文章标题和内容,将内容构建成html,再转... 目录一、为什么要搞?二、准备如何搞?三、说搞咱就搞!抓取文章提取内容构建html转存markdown

Python获取中国节假日数据记录入JSON文件

《Python获取中国节假日数据记录入JSON文件》项目系统内置的日历应用为了提升用户体验,特别设置了在调休日期显示“休”的UI图标功能,那么问题是这些调休数据从哪里来呢?我尝试一种更为智能的方法:P... 目录节假日数据获取存入jsON文件节假日数据读取封装完整代码项目系统内置的日历应用为了提升用户体验,

Python FastAPI+Celery+RabbitMQ实现分布式图片水印处理系统

《PythonFastAPI+Celery+RabbitMQ实现分布式图片水印处理系统》这篇文章主要为大家详细介绍了PythonFastAPI如何结合Celery以及RabbitMQ实现简单的分布式... 实现思路FastAPI 服务器Celery 任务队列RabbitMQ 作为消息代理定时任务处理完整

Python Websockets库的使用指南

《PythonWebsockets库的使用指南》pythonwebsockets库是一个用于创建WebSocket服务器和客户端的Python库,它提供了一种简单的方式来实现实时通信,支持异步和同步... 目录一、WebSocket 简介二、python 的 websockets 库安装三、完整代码示例1.

揭秘Python Socket网络编程的7种硬核用法

《揭秘PythonSocket网络编程的7种硬核用法》Socket不仅能做聊天室,还能干一大堆硬核操作,这篇文章就带大家看看Python网络编程的7种超实用玩法,感兴趣的小伙伴可以跟随小编一起... 目录1.端口扫描器:探测开放端口2.简易 HTTP 服务器:10 秒搭个网页3.局域网游戏:多人联机对战4.

使用Python实现快速搭建本地HTTP服务器

《使用Python实现快速搭建本地HTTP服务器》:本文主要介绍如何使用Python快速搭建本地HTTP服务器,轻松实现一键HTTP文件共享,同时结合二维码技术,让访问更简单,感兴趣的小伙伴可以了... 目录1. 概述2. 快速搭建 HTTP 文件共享服务2.1 核心思路2.2 代码实现2.3 代码解读3.

Python使用自带的base64库进行base64编码和解码

《Python使用自带的base64库进行base64编码和解码》在Python中,处理数据的编码和解码是数据传输和存储中非常普遍的需求,其中,Base64是一种常用的编码方案,本文我将详细介绍如何使... 目录引言使用python的base64库进行编码和解码编码函数解码函数Base64编码的应用场景注意

Python基于wxPython和FFmpeg开发一个视频标签工具

《Python基于wxPython和FFmpeg开发一个视频标签工具》在当今数字媒体时代,视频内容的管理和标记变得越来越重要,无论是研究人员需要对实验视频进行时间点标记,还是个人用户希望对家庭视频进行... 目录引言1. 应用概述2. 技术栈分析2.1 核心库和模块2.2 wxpython作为GUI选择的优

Python如何使用__slots__实现节省内存和性能优化

《Python如何使用__slots__实现节省内存和性能优化》你有想过,一个小小的__slots__能让你的Python类内存消耗直接减半吗,没错,今天咱们要聊的就是这个让人眼前一亮的技巧,感兴趣的... 目录背景:内存吃得满满的类__slots__:你的内存管理小助手举个大概的例子:看看效果如何?1.

Python+PyQt5实现多屏幕协同播放功能

《Python+PyQt5实现多屏幕协同播放功能》在现代会议展示、数字广告、展览展示等场景中,多屏幕协同播放已成为刚需,下面我们就来看看如何利用Python和PyQt5开发一套功能强大的跨屏播控系统吧... 目录一、项目概述:突破传统播放限制二、核心技术解析2.1 多屏管理机制2.2 播放引擎设计2.3 专