fisher判别分析原理及实现

2023-12-20 05:08

本文主要是介绍fisher判别分析原理及实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

参考资料:

  • 周志华老师的《机器学习》
  • http://wiki.mbalib.com/wiki/%E5%88%A4%E5%88%AB%E5%88%86%E6%9E%90

判别分析是一种经典的现行分析方法,其利用已知类别的样本建立判别模型,对未知类别的样本进行分类。在这里我们主要讨论fisher判别分析的方法。

fishter原理

费歇(FISHER)判别思想是投影,使多维问题简化为一维问题来处理。选择一个适当的投影轴,使所有的样品点都投影到这个轴上得到一个投影值。对这个投影轴的方向的要求是:使每一类内的投影值所形成的类内离差尽可能小,而不同类间的投影值所形成的类间离差尽可能大。

公式推导

这里给出一个二维的示意图(摘自周志华老师的《机器学习》一书),在接下来的讨论中我们也将以二维的情况做分类来逐步分析原理和实现。
摘自周志华老师的机器学习
ps: 图中有一处描述似乎不是特别的准确,直线的方程应该是

0=wTx


而不是

y=wTx

ps: 因为在书关于此的其他讨论中,并未涉及任何y的概念,这里将y写入对我造成了某种误导。

对于给定的数据集,D(已经设置好分类标签),

Xi,Ui,i
分别表示给定类别

i
上,则样本中心的投影为

0=w1u1+w2u2++wnun
。(n 为样本维度,接下来的讨论中将统一设置为2),写成向量形式则为

wTu=0
如果将所有的样本都投影到直线上,则两类样本的协方差分别为

wT0wwT1w
。要想达到较好的分类效果,应该是的同类样本的投影点尽可能的接近,也就是让同类样本投影点的协方差尽可能的小。即

(wT0w+wT0w)
尽可能小。同时也应该保证不同类样本投影点尽可能的互相远离,即

∥∥wTu0wTu1∥∥
尽可能大。如果同时考虑两者的关系可以得到下面需要最大化的目标:

J=∥∥wTu0wTu1∥∥wT0w+wT0w


这里定义“类内散度矩阵”(within-class scatter matrix)

Sw=0+1=xX0(xu0)(xu0)T+xX1(xu1)(xu1)T


以及类间离散度矩阵(between-class scatter matrix)

Sb=(u0u1)(u0u1)T


J

ps:sorry 这些公式确实敲得有点累,道个歉,我直接截图了。希望不影响大家的理解。

这里写图片描述

在推导出上面的公式之后我们就可以开始写代码了。

编程实现

数据生成

这里我偷一个懒,直接用scikit-learn的接口来生成数据:

from sklearn.datasets import make_multilabel_classification
import numpy as np

x, y = make_multilabel_classification(n_samples=20, n_features=2,
n_labels=1, n_classes=1,
random_state=2) # 设置随机数种子,保证每次产生相同的数据。

# 根据类别分个类
index1 = np.array([index for (index, value) in enumerate(y) if value == 0]) # 获取类别1的indexs
index2 = np.array([index for (index, value) in enumerate(y) if value == 1]) # 获取类别2的indexs

c_1 = x[index1] # 类别1的所有数据(x1, x2) in X_1
c_2 = x[index2] # 类别2的所有数据(x1, x2) in X_2

fisher算法实现


def cal_cov_and_avg(samples):"""给定一个类别的数据,计算协方差矩阵和平均向量:param samples: :return: """u1 = np.mean(samples, axis=0)cov_m = np.zeros((samples.shape[1], samples.shape[1]))for s in samples:t = s - u1cov_m += t * t.reshape(2, 1)return cov_m, u1

def fisher(c_1, c_2):
“”"
fisher算法实现(请参考上面推导出来的公式,那个才是精华部分)
:param c_1:
:param c_2:
:return:
“”"

cov_1, u1 = cal_cov_and_avg(c_1)
cov_2, u2 = cal_cov_and_avg(c_2)
s_w = cov_1 + cov_2
u, s, v = np.linalg.svd(s_w) # 奇异值分解
s_w_inv = np.dot(np.dot(v.T, np.linalg.inv(np.diag(s))), u.T)
return np.dot(s_w_inv, u1 - u2)

判定类别

def judge(sample, w, c_1, c_2):"""true 属于1false 属于2:param sample::param w::param center_1::param center_2::return:"""u1 = np.mean(c_1, axis=0)u2 = np.mean(c_2, axis=0)center_1 = np.dot(w.T, u1)center_2 = np.dot(w.T, u2)pos = np.dot(w.T, sample)return abs(pos - center_1) < abs(pos - center_2)

w = fisher(c_1, c_2) # 调用函数,得到参数w
out = judge(c_1[1], w, c_1, c_2) # 判断所属的类别
print(out)

绘图

import matplotlib.pyplot as plt

plt.scatter(c_1[:, 0], c_1[:, 1], c=’#99CC99’)
plt.scatter(c_2[:, 0], c_2[:, 1], c=’#FFCC00’)
line_x = np.arange(min(np.min(c_1[:, 0]), np.min(c_2[:, 0])),
max(np.max(c_1[:, 0]), np.max(c_2[:, 0])),
step=1)

line_y = - (w[0] * line_x) / w[1]
plt.plot(line_x, line_y)
plt.show()

最后一步【贴图】
这里写图片描述

最后的最后,大家只要把上面所有的代码复制粘贴到一个文件夹下,在python3 环境下运行就好了。本人调试运行的环境为:

这篇关于fisher判别分析原理及实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/514848

相关文章

SpringBoot3实现Gzip压缩优化的技术指南

《SpringBoot3实现Gzip压缩优化的技术指南》随着Web应用的用户量和数据量增加,网络带宽和页面加载速度逐渐成为瓶颈,为了减少数据传输量,提高用户体验,我们可以使用Gzip压缩HTTP响应,... 目录1、简述2、配置2.1 添加依赖2.2 配置 Gzip 压缩3、服务端应用4、前端应用4.1 N

Java编译生成多个.class文件的原理和作用

《Java编译生成多个.class文件的原理和作用》作为一名经验丰富的开发者,在Java项目中执行编译后,可能会发现一个.java源文件有时会产生多个.class文件,从技术实现层面详细剖析这一现象... 目录一、内部类机制与.class文件生成成员内部类(常规内部类)局部内部类(方法内部类)匿名内部类二、

SpringBoot实现数据库读写分离的3种方法小结

《SpringBoot实现数据库读写分离的3种方法小结》为了提高系统的读写性能和可用性,读写分离是一种经典的数据库架构模式,在SpringBoot应用中,有多种方式可以实现数据库读写分离,本文将介绍三... 目录一、数据库读写分离概述二、方案一:基于AbstractRoutingDataSource实现动态

Python FastAPI+Celery+RabbitMQ实现分布式图片水印处理系统

《PythonFastAPI+Celery+RabbitMQ实现分布式图片水印处理系统》这篇文章主要为大家详细介绍了PythonFastAPI如何结合Celery以及RabbitMQ实现简单的分布式... 实现思路FastAPI 服务器Celery 任务队列RabbitMQ 作为消息代理定时任务处理完整

Java枚举类实现Key-Value映射的多种实现方式

《Java枚举类实现Key-Value映射的多种实现方式》在Java开发中,枚举(Enum)是一种特殊的类,本文将详细介绍Java枚举类实现key-value映射的多种方式,有需要的小伙伴可以根据需要... 目录前言一、基础实现方式1.1 为枚举添加属性和构造方法二、http://www.cppcns.co

使用Python实现快速搭建本地HTTP服务器

《使用Python实现快速搭建本地HTTP服务器》:本文主要介绍如何使用Python快速搭建本地HTTP服务器,轻松实现一键HTTP文件共享,同时结合二维码技术,让访问更简单,感兴趣的小伙伴可以了... 目录1. 概述2. 快速搭建 HTTP 文件共享服务2.1 核心思路2.2 代码实现2.3 代码解读3.

MySQL双主搭建+keepalived高可用的实现

《MySQL双主搭建+keepalived高可用的实现》本文主要介绍了MySQL双主搭建+keepalived高可用的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,... 目录一、测试环境准备二、主从搭建1.创建复制用户2.创建复制关系3.开启复制,确认复制是否成功4.同

Java实现文件图片的预览和下载功能

《Java实现文件图片的预览和下载功能》这篇文章主要为大家详细介绍了如何使用Java实现文件图片的预览和下载功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... Java实现文件(图片)的预览和下载 @ApiOperation("访问文件") @GetMapping("

使用Sentinel自定义返回和实现区分来源方式

《使用Sentinel自定义返回和实现区分来源方式》:本文主要介绍使用Sentinel自定义返回和实现区分来源方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Sentinel自定义返回和实现区分来源1. 自定义错误返回2. 实现区分来源总结Sentinel自定

Java实现时间与字符串互相转换详解

《Java实现时间与字符串互相转换详解》这篇文章主要为大家详细介绍了Java中实现时间与字符串互相转换的相关方法,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、日期格式化为字符串(一)使用预定义格式(二)自定义格式二、字符串解析为日期(一)解析ISO格式字符串(二)解析自定义