fisher判别分析原理及实现

2023-12-20 05:08

本文主要是介绍fisher判别分析原理及实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

参考资料:

  • 周志华老师的《机器学习》
  • http://wiki.mbalib.com/wiki/%E5%88%A4%E5%88%AB%E5%88%86%E6%9E%90

判别分析是一种经典的现行分析方法,其利用已知类别的样本建立判别模型,对未知类别的样本进行分类。在这里我们主要讨论fisher判别分析的方法。

fishter原理

费歇(FISHER)判别思想是投影,使多维问题简化为一维问题来处理。选择一个适当的投影轴,使所有的样品点都投影到这个轴上得到一个投影值。对这个投影轴的方向的要求是:使每一类内的投影值所形成的类内离差尽可能小,而不同类间的投影值所形成的类间离差尽可能大。

公式推导

这里给出一个二维的示意图(摘自周志华老师的《机器学习》一书),在接下来的讨论中我们也将以二维的情况做分类来逐步分析原理和实现。
摘自周志华老师的机器学习
ps: 图中有一处描述似乎不是特别的准确,直线的方程应该是

0=wTx


而不是

y=wTx

ps: 因为在书关于此的其他讨论中,并未涉及任何y的概念,这里将y写入对我造成了某种误导。

对于给定的数据集,D(已经设置好分类标签),

Xi,Ui,i
分别表示给定类别

i
上,则样本中心的投影为

0=w1u1+w2u2++wnun
。(n 为样本维度,接下来的讨论中将统一设置为2),写成向量形式则为

wTu=0
如果将所有的样本都投影到直线上,则两类样本的协方差分别为

wT0wwT1w
。要想达到较好的分类效果,应该是的同类样本的投影点尽可能的接近,也就是让同类样本投影点的协方差尽可能的小。即

(wT0w+wT0w)
尽可能小。同时也应该保证不同类样本投影点尽可能的互相远离,即

∥∥wTu0wTu1∥∥
尽可能大。如果同时考虑两者的关系可以得到下面需要最大化的目标:

J=∥∥wTu0wTu1∥∥wT0w+wT0w


这里定义“类内散度矩阵”(within-class scatter matrix)

Sw=0+1=xX0(xu0)(xu0)T+xX1(xu1)(xu1)T


以及类间离散度矩阵(between-class scatter matrix)

Sb=(u0u1)(u0u1)T


J

ps:sorry 这些公式确实敲得有点累,道个歉,我直接截图了。希望不影响大家的理解。

这里写图片描述

在推导出上面的公式之后我们就可以开始写代码了。

编程实现

数据生成

这里我偷一个懒,直接用scikit-learn的接口来生成数据:

from sklearn.datasets import make_multilabel_classification
import numpy as np

x, y = make_multilabel_classification(n_samples=20, n_features=2,
n_labels=1, n_classes=1,
random_state=2) # 设置随机数种子,保证每次产生相同的数据。

# 根据类别分个类
index1 = np.array([index for (index, value) in enumerate(y) if value == 0]) # 获取类别1的indexs
index2 = np.array([index for (index, value) in enumerate(y) if value == 1]) # 获取类别2的indexs

c_1 = x[index1] # 类别1的所有数据(x1, x2) in X_1
c_2 = x[index2] # 类别2的所有数据(x1, x2) in X_2

fisher算法实现


def cal_cov_and_avg(samples):"""给定一个类别的数据,计算协方差矩阵和平均向量:param samples: :return: """u1 = np.mean(samples, axis=0)cov_m = np.zeros((samples.shape[1], samples.shape[1]))for s in samples:t = s - u1cov_m += t * t.reshape(2, 1)return cov_m, u1

def fisher(c_1, c_2):
“”"
fisher算法实现(请参考上面推导出来的公式,那个才是精华部分)
:param c_1:
:param c_2:
:return:
“”"

cov_1, u1 = cal_cov_and_avg(c_1)
cov_2, u2 = cal_cov_and_avg(c_2)
s_w = cov_1 + cov_2
u, s, v = np.linalg.svd(s_w) # 奇异值分解
s_w_inv = np.dot(np.dot(v.T, np.linalg.inv(np.diag(s))), u.T)
return np.dot(s_w_inv, u1 - u2)

判定类别

def judge(sample, w, c_1, c_2):"""true 属于1false 属于2:param sample::param w::param center_1::param center_2::return:"""u1 = np.mean(c_1, axis=0)u2 = np.mean(c_2, axis=0)center_1 = np.dot(w.T, u1)center_2 = np.dot(w.T, u2)pos = np.dot(w.T, sample)return abs(pos - center_1) < abs(pos - center_2)

w = fisher(c_1, c_2) # 调用函数,得到参数w
out = judge(c_1[1], w, c_1, c_2) # 判断所属的类别
print(out)

绘图

import matplotlib.pyplot as plt

plt.scatter(c_1[:, 0], c_1[:, 1], c=’#99CC99’)
plt.scatter(c_2[:, 0], c_2[:, 1], c=’#FFCC00’)
line_x = np.arange(min(np.min(c_1[:, 0]), np.min(c_2[:, 0])),
max(np.max(c_1[:, 0]), np.max(c_2[:, 0])),
step=1)

line_y = - (w[0] * line_x) / w[1]
plt.plot(line_x, line_y)
plt.show()

最后一步【贴图】
这里写图片描述

最后的最后,大家只要把上面所有的代码复制粘贴到一个文件夹下,在python3 环境下运行就好了。本人调试运行的环境为:

这篇关于fisher判别分析原理及实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/514848

相关文章

Java中使用Java Mail实现邮件服务功能示例

《Java中使用JavaMail实现邮件服务功能示例》:本文主要介绍Java中使用JavaMail实现邮件服务功能的相关资料,文章还提供了一个发送邮件的示例代码,包括创建参数类、邮件类和执行结... 目录前言一、历史背景二编程、pom依赖三、API说明(一)Session (会话)(二)Message编程客

Java中List转Map的几种具体实现方式和特点

《Java中List转Map的几种具体实现方式和特点》:本文主要介绍几种常用的List转Map的方式,包括使用for循环遍历、Java8StreamAPI、ApacheCommonsCollect... 目录前言1、使用for循环遍历:2、Java8 Stream API:3、Apache Commons

C#提取PDF表单数据的实现流程

《C#提取PDF表单数据的实现流程》PDF表单是一种常见的数据收集工具,广泛应用于调查问卷、业务合同等场景,凭借出色的跨平台兼容性和标准化特点,PDF表单在各行各业中得到了广泛应用,本文将探讨如何使用... 目录引言使用工具C# 提取多个PDF表单域的数据C# 提取特定PDF表单域的数据引言PDF表单是一

使用Python实现高效的端口扫描器

《使用Python实现高效的端口扫描器》在网络安全领域,端口扫描是一项基本而重要的技能,通过端口扫描,可以发现目标主机上开放的服务和端口,这对于安全评估、渗透测试等有着不可忽视的作用,本文将介绍如何使... 目录1. 端口扫描的基本原理2. 使用python实现端口扫描2.1 安装必要的库2.2 编写端口扫

PyCharm接入DeepSeek实现AI编程的操作流程

《PyCharm接入DeepSeek实现AI编程的操作流程》DeepSeek是一家专注于人工智能技术研发的公司,致力于开发高性能、低成本的AI模型,接下来,我们把DeepSeek接入到PyCharm中... 目录引言效果演示创建API key在PyCharm中下载Continue插件配置Continue引言

MySQL分表自动化创建的实现方案

《MySQL分表自动化创建的实现方案》在数据库应用场景中,随着数据量的不断增长,单表存储数据可能会面临性能瓶颈,例如查询、插入、更新等操作的效率会逐渐降低,分表是一种有效的优化策略,它将数据分散存储在... 目录一、项目目的二、实现过程(一)mysql 事件调度器结合存储过程方式1. 开启事件调度器2. 创

使用Python实现操作mongodb详解

《使用Python实现操作mongodb详解》这篇文章主要为大家详细介绍了使用Python实现操作mongodb的相关知识,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、示例二、常用指令三、遇到的问题一、示例from pymongo import MongoClientf

SQL Server使用SELECT INTO实现表备份的代码示例

《SQLServer使用SELECTINTO实现表备份的代码示例》在数据库管理过程中,有时我们需要对表进行备份,以防数据丢失或修改错误,在SQLServer中,可以使用SELECTINT... 在数据库管理过程中,有时我们需要对表进行备份,以防数据丢失或修改错误。在 SQL Server 中,可以使用 SE

基于Go语言实现一个压测工具

《基于Go语言实现一个压测工具》这篇文章主要为大家详细介绍了基于Go语言实现一个简单的压测工具,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录整体架构通用数据处理模块Http请求响应数据处理Curl参数解析处理客户端模块Http客户端处理Grpc客户端处理Websocket客户端

Java CompletableFuture如何实现超时功能

《JavaCompletableFuture如何实现超时功能》:本文主要介绍实现超时功能的基本思路以及CompletableFuture(之后简称CF)是如何通过代码实现超时功能的,需要的... 目录基本思路CompletableFuture 的实现1. 基本实现流程2. 静态条件分析3. 内存泄露 bug