YOLOv8重要文件解读

2023-12-19 23:15
文章标签 yolov8 解读 重要文件

本文主要是介绍YOLOv8重要文件解读,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

🍨 本文为[🔗365天深度学习训练营学习记录博客
🍦 参考文章:365天深度学习训练营
🍖 原作者:[K同学啊 | 接辅导、项目定制]
🚀 文章来源:[K同学的学习圈子](https://www.yuque.com/mingtian-fkmxf/zxwb45) 

D:\ultralytics-main\ultralytics-main\ultralytics\nn\models\** 目录下的文件与YOLOv5commonpy中文件起到的作用相同,对应模型中的相应模块 。

conv.py文件 

def autopad(k, p=None, d=1):  # kernel, padding, dilation"""Pad to 'same' shape outputs."""if d > 1:k = d * (k - 1) + 1 if isinstance(k, int) else [d * (x - 1) + 1 for x in k]  # actual kernel-sizeif p is None:p = k // 2 if isinstance(k, int) else [x // 2 for x in k]  # auto-padreturn p

函数的参数包括:

  • k:卷积核的大小,可以是整数或整数列表。
  • p:填充大小,可以是整数或整数列表,如果未提供,则自动计算。
  • d:膨胀率(dilation rate),默认为1。
class Conv(nn.Module):"""Standard convolution with args(ch_in, ch_out, kernel, stride, padding, groups, dilation, activation)."""default_act = nn.SiLU()  # default activationdef __init__(self, c1, c2, k=1, s=1, p=None, g=1, d=1, act=True):"""Initialize Conv layer with given arguments including activation."""super().__init__()self.conv = nn.Conv2d(c1, c2, k, s, autopad(k, p, d), groups=g, dilation=d, bias=False)self.bn = nn.BatchNorm2d(c2)self.act = self.default_act if act is True else act if isinstance(act, nn.Module) else nn.Identity()def forward(self, x):"""Apply convolution, batch normalization and activation to input tensor."""return self.act(self.bn(self.conv(x)))def forward_fuse(self, x):"""Perform transposed convolution of 2D data."""return self.act(self.conv(x))class Conv2(Conv):"""Simplified RepConv module with Conv fusing."""def __init__(self, c1, c2, k=3, s=1, p=None, g=1, d=1, act=True):"""Initialize Conv layer with given arguments including activation."""super().__init__(c1, c2, k, s, p, g=g, d=d, act=act)self.cv2 = nn.Conv2d(c1, c2, 1, s, autopad(1, p, d), groups=g, dilation=d, bias=False)  # add 1x1 convdef forward(self, x):"""Apply convolution, batch normalization and activation to input tensor."""return self.act(self.bn(self.conv(x) + self.cv2(x)))def forward_fuse(self, x):"""Apply fused convolution, batch normalization and activation to input tensor."""return self.act(self.bn(self.conv(x)))def fuse_convs(self):"""Fuse parallel convolutions."""w = torch.zeros_like(self.conv.weight.data)i = [x // 2 for x in w.shape[2:]]w[:, :, i[0]:i[0] + 1, i[1]:i[1] + 1] = self.cv2.weight.data.clone()self.conv.weight.data += wself.__delattr__('cv2')self.forward = self.forward_fuse

__init__ 方法用于初始化卷积层,参数包括输入通道数 c1,输出通道数 c2,卷积核大小 k,步幅 s,填充大小 p,分组数 g,膨胀率 d,以及是否使用激活函数 act

class LightConv(nn.Module):"""Light convolution with args(ch_in, ch_out, kernel).https://github.com/PaddlePaddle/PaddleDetection/blob/develop/ppdet/modeling/backbones/hgnet_v2.py"""def __init__(self, c1, c2, k=1, act=nn.ReLU()):"""Initialize Conv layer with given arguments including activation."""super().__init__()self.conv1 = Conv(c1, c2, 1, act=False)self.conv2 = DWConv(c2, c2, k, act=act)def forward(self, x):"""Apply 2 convolutions to input tensor."""return self.conv2(self.conv1(x))class DWConv(Conv):"""Depth-wise convolution."""def __init__(self, c1, c2, k=1, s=1, d=1, act=True):  # ch_in, ch_out, kernel, stride, dilation, activation"""Initialize Depth-wise convolution with given parameters."""super().__init__(c1, c2, k, s, g=math.gcd(c1, c2), d=d, act=act)

LightConv类

  • LightConv 类表示轻量级卷积,包含两个卷积层的堆叠。

DWConv类

  • DWConv 类表示深度可分离卷积。
  • 在初始化过程中,调用了父类 Conv__init__ 方法,其中 g 参数被设置为输入通道数和输出通道数的最大公约数,从而实现深度可分离卷积。
class DWConvTranspose2d(nn.ConvTranspose2d):"""Depth-wise transpose convolution."""def __init__(self, c1, c2, k=1, s=1, p1=0, p2=0):  # ch_in, ch_out, kernel, stride, padding, padding_out"""Initialize DWConvTranspose2d class with given parameters."""super().__init__(c1, c2, k, s, p1, p2, groups=math.gcd(c1, c2))class ConvTranspose(nn.Module):"""Convolution transpose 2d layer."""default_act = nn.SiLU()  # default activationdef __init__(self, c1, c2, k=2, s=2, p=0, bn=True, act=True):"""Initialize ConvTranspose2d layer with batch normalization and activation function."""super().__init__()self.conv_transpose = nn.ConvTranspose2d(c1, c2, k, s, p, bias=not bn)self.bn = nn.BatchNorm2d(c2) if bn else nn.Identity()self.act = self.default_act if act is True else act if isinstance(act, nn.Module) else nn.Identity()def forward(self, x):"""Applies transposed convolutions, batch normalization and activation to input."""return self.act(self.bn(self.conv_transpose(x)))def forward_fuse(self, x):"""Applies activation and convolution transpose operation to input."""return self.act(self.conv_transpose(x))
  1. DWConvTranspose2d类

    • DWConvTranspose2d 类表示深度可分离的转置卷积。
    • 在初始化过程中,调用了父类 nn.ConvTranspose2d__init__ 方法,并设置了 groups 参数为输入通道数和输出通道数的最大公约数。
  2. ConvTranspose类

    • ConvTranspose 类表示转置卷积 2D 层,与普通转置卷积相比,它包含了可选的批归一化和激活函数。
    • __init__ 方法用于初始化转置卷积,参数包括输入通道数 c1,输出通道数 c2,卷积核大小 k,步幅 s,填充参数 p,以及是否使用批归一化 bn 和激活函数 act
    • 在初始化过程中,创建了转置卷积层 conv_transpose,以及可选的批归一化层 bn 和激活函数 act
class Focus(nn.Module):"""Focus wh information into c-space."""def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True):"""Initializes Focus object with user defined channel, convolution, padding, group and activation values."""super().__init__()self.conv = Conv(c1 * 4, c2, k, s, p, g, act=act)# self.contract = Contract(gain=2)def forward(self, x):"""Applies convolution to concatenated tensor and returns the output.Input shape is (b,c,w,h) and output shape is (b,4c,w/2,h/2)."""return self.conv(torch.cat((x[..., ::2, ::2], x[..., 1::2, ::2], x[..., ::2, 1::2], x[..., 1::2, 1::2]), 1))# return self.conv(self.contract(x))
  • Focus类(用于在通道维度上聚焦宽高信息

    • Focus 类继承自 nn.Module,表示将宽高信息集中到通道空间的操作。
    • 在初始化过程中,创建了一个包含四个输入通道的卷积层 self.conv。卷积层将四个通道的信息进行卷积操作,然后输出到通道维度上,用于集中宽高信息。
  • forward 方法:

    • forward 方法实现了前向传播操作。
    • 输入张量的形状为 (b, c, w, h),其中 b 是批量大小,c 是通道数,wh 是宽和高。
    • 通过 torch.cat 将输入张量沿着宽和高方向进行四次拼接,得到一个新的张量,形状为 (b, 4c, w/2, h/2)。
class GhostConv(nn.Module):"""Ghost Convolution https://github.com/huawei-noah/ghostnet."""def __init__(self, c1, c2, k=1, s=1, g=1, act=True):"""Initializes the GhostConv object with input channels, output channels, kernel size, stride, groups andactivation."""super().__init__()c_ = c2 // 2  # hidden channelsself.cv1 = Conv(c1, c_, k, s, None, g, act=act)self.cv2 = Conv(c_, c_, 5, 1, None, c_, act=act)def forward(self, x):"""Forward propagation through a Ghost Bottleneck layer with skip connection."""y = self.cv1(x)return torch.cat((y, self.cv2(y)), 1)

Ghost Convolution 是通过两个卷积层组合的轻量级卷积操作,其主要功能是在保持模型轻量化的同时,增加网络的感受野和表征能力。

两个卷积层组合的轻量级卷积操作:

  • 首先在初始化两个卷积层 self.cv1 = Conv(c1, c_, k, s, None, g, act=act) self.cv2 = Conv(c_, c_, 5, 1, None, c_, act=act)
  • 在forward 方法中实现两个卷积层组合:y = self.cv1(x) 将输入张量 x 传递给第一个卷积层 self.cv1 进行卷积,得到输出张量 y return torch.cat((y, self.cv2(y)), 1) 将输出张量 yself.cv2(y) 进行通道维度上的拼接,得到最终的输出。

这篇关于YOLOv8重要文件解读的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/514046

相关文章

java之Objects.nonNull用法代码解读

《java之Objects.nonNull用法代码解读》:本文主要介绍java之Objects.nonNull用法代码,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐... 目录Java之Objects.nonwww.chinasem.cnNull用法代码Objects.nonN

SpringCloud负载均衡spring-cloud-starter-loadbalancer解读

《SpringCloud负载均衡spring-cloud-starter-loadbalancer解读》:本文主要介绍SpringCloud负载均衡spring-cloud-starter-loa... 目录简述主要特点使用负载均衡算法1. 轮询负载均衡策略(Round Robin)2. 随机负载均衡策略(

解读spring.factories文件配置详情

《解读spring.factories文件配置详情》:本文主要介绍解读spring.factories文件配置详情,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录使用场景作用内部原理机制SPI机制Spring Factories 实现原理用法及配置spring.f

Spring MVC使用视图解析的问题解读

《SpringMVC使用视图解析的问题解读》:本文主要介绍SpringMVC使用视图解析的问题解读,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Spring MVC使用视图解析1. 会使用视图解析的情况2. 不会使用视图解析的情况总结Spring MVC使用视图

Linux中的进程间通信之匿名管道解读

《Linux中的进程间通信之匿名管道解读》:本文主要介绍Linux中的进程间通信之匿名管道解读,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、基本概念二、管道1、温故知新2、实现方式3、匿名管道(一)管道中的四种情况(二)管道的特性总结一、基本概念我们知道多

Linux系统之authconfig命令的使用解读

《Linux系统之authconfig命令的使用解读》authconfig是一个用于配置Linux系统身份验证和账户管理设置的命令行工具,主要用于RedHat系列的Linux发行版,它提供了一系列选项... 目录linux authconfig命令的使用基本语法常用选项示例总结Linux authconfi

解读docker运行时-itd参数是什么意思

《解读docker运行时-itd参数是什么意思》在Docker中,-itd参数组合用于在后台运行一个交互式容器,同时保持标准输入和分配伪终端,这种方式适合需要在后台运行容器并保持交互能力的场景... 目录docker运行时-itd参数是什么意思1. -i(或 --interactive)2. -t(或 --

解读为什么@Autowired在属性上被警告,在setter方法上不被警告问题

《解读为什么@Autowired在属性上被警告,在setter方法上不被警告问题》在Spring开发中,@Autowired注解常用于实现依赖注入,它可以应用于类的属性、构造器或setter方法上,然... 目录1. 为什么 @Autowired 在属性上被警告?1.1 隐式依赖注入1.2 IDE 的警告:

Rust中的注释使用解读

《Rust中的注释使用解读》本文介绍了Rust中的行注释、块注释和文档注释的使用方法,通过示例展示了如何在实际代码中应用这些注释,以提高代码的可读性和可维护性... 目录Rust 中的注释使用指南1. 行注释示例:行注释2. 块注释示例:块注释3. 文档注释示例:文档注释4. 综合示例总结Rust 中的注释

解读Pandas和Polars的区别及说明

《解读Pandas和Polars的区别及说明》Pandas和Polars是Python中用于数据处理的两个库,Pandas适用于中小规模数据的快速原型开发和复杂数据操作,而Polars则专注于高效数据... 目录Pandas vs Polars 对比表使用场景对比Pandas 的使用场景Polars 的使用