本文主要是介绍【转】 Matlab Code = 全变分图像去噪方法(Total Variation-based Image Denoising),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
Matlab Code = 全变分图像去噪方法(Total Variation-based Image Denoising)
Reference
[1] L. Rudin, S. Osher, E. Fatemi, 'Nonlinear Total Variation based noise removal algorithm', Physica D 60 259-268, 1992.
Related Website
[2] Total Variation Denoising : http://visl.technion.ac.il/~gilboa/PDE-filt/tv_denoising.html
function J=tv(I,iter,dt,ep,lam,I0,C)
%% Private function: tv (by Guy Gilboa).
%% Total Variation denoising.
%% Example: J=tv(I,iter,dt,ep,lam,I0)
%% Input: I - image (double array gray level 1-256),
%% iter - num of iterations,
%% dt - time step [0.2],
%% ep - epsilon (of gradient regularization) [1],
%% lam - fidelity term lambda [0],
%% I0 - input (noisy) image [I0=I]
%% (default values are in [])
%% Output: evolved image
if ~exist('ep')
ep=1;
end
if ~exist('dt')
dt=ep/5; % dt below the CFL bound
end
if ~exist('lam')
lam=0;
end
if ~exist('I0')
I0=I;
end
if ~exist('C')
C=0;
end
[ny,nx]=size(I); ep2=ep^2;
for i=1:iter, %% do iterations
% estimate derivatives
I_x = (I(:,[2:nx nx])-I(:,[1 1:nx-1]))/2;
I_y = (I([2:ny ny],:)-I([1 1:ny-1],:))/2;
I_xx = I(:,[2:nx nx])+I(:,[1 1:nx-1])-2*I;
I_yy = I([2:ny ny],:)+I([1 1:ny-1],:)-2*I;
Dp = I([2:ny ny],[2:nx nx])+I([1 1:ny-1],[1 1:nx-1]);
Dm = I([1 1:ny-1],[2:nx nx])+I([2:ny ny],[1 1:nx-1]);
I_xy = (Dp-Dm)/4;
% compute flow
Num = I_xx.*(ep2+I_y.^2)-2*I_x.*I_y.*I_xy+I_yy.*(ep2+I_x.^2);
Den = (ep2+I_x.^2+I_y.^2).^(3/2);
I_t = Num./Den + lam.*(I0-I+C);
I=I+dt*I_t; %% evolve image by dt
end % for i
%% return image
%J=I*Imean/mean(mean(I)); % normalize to original mean
这篇关于【转】 Matlab Code = 全变分图像去噪方法(Total Variation-based Image Denoising)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!