Python:(Sentinel-1)如何解析SNAP输出的HDF5文件并输出为GeoTIFF?

2023-12-19 04:20

本文主要是介绍Python:(Sentinel-1)如何解析SNAP输出的HDF5文件并输出为GeoTIFF?,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

博客已同步微信公众号:GIS茄子;若博客出现纰漏或有更多问题交流欢迎关注GIS茄子,或者邮箱联系(推荐-见主页).
微信公众号
Python:(Sentinel-1)如何解析SNAP输出的HDF5文件并输出为GeoTIFF?

01 前言

最近在了解sentinel-1的预处理过程,但是由于影响太大了,常规的GeoTIFF无法输出预处理结果,BigTIFF输出时似乎也遇到了一些问题(好在后面解决了,所以正好做一下HDF5文件输出的TIFF文件与BigTIFF文件的对比),对于输出的HDF5文件则完全没有问题。但是问题在于HDF5文件的结构尚不了解,因此对于其中的地理信息如何提取很关键(当然你可以使用ArcGIS或者ENVI打开其中的VV和VH波段,但是都无法自动读取到其中的地理信息或者坐标系信息)。

02 解析HDF5文件

由于我处理的Sentinel-1时IW的VV和VH,因此输出的HDF5文件存在两个波段:

VV和VH相关波段信息

下方是关于这个地理信息的参数(ps:找了我好久,里面的属性信息真的太多了,而且官方文档似乎对于这个HDF5文件的结构并没有说明,真的象拔蚌了🌿):

元数据

那么我们来解释一下其中关键的8个参数:
first_near_lat = 30.710711909958782; // double
first_near_long = 106.20485428671394; // double
first_far_lat = 30.710711909958782; // double
first_far_long = 109.12878070499457; // double
last_near_lat = 28.79451557740343; // double
last_near_long = 106.20485428671394; // double
last_far_lat = 28.79451557740343; // double
last_far_long = 109.12878070499457; // double

未必准确,但是目前从得到的结果与BigTIFF对比是几乎完全一致的地理位置(如果有更详细的文档或者准确信息,请微信公众号或者邮箱联系我,这对我帮助很大)。

first 表示第一行,last表示最后一行,near表示扫描线的起点,far表示扫描线的终点。

其实这里搞不懂为什么要有四个点位的信息?一般的角点信息只需要左上和右下两个点位就足够了,算了我不是这个方向的多说无益。

那么,其实说到这里其实已经搞定了,WGS84坐标系有了,仿射参数也已经有了,VV和VH波段数据也有了。

03 代码

# @Author   : ChaoQiezi
# @Time     : 2023/12/18  8:40
# @Email    : chaoqiezi.one@qq.com"""
This script is used to 读取HDF5、BigTIFF文件
"""import os.path
import h5py
from osgeo import gdal, osr# 准备
h5_path = r'H:\Datasets\Objects\TobacooLeafRecognition\Data\HDF5\S1A_IW_GRDH_1SDV_20220602T103546_20220602T103611_043483_05311F_8F62_NR_Orb_Cal_Spk_TC_dB.h5'
tiff_path = r'H:\Datasets\Objects\TobacooLeafRecognition\Data\BigTIFF\S1A_IW_GRDH_1SDV_20220602T103546_20220602T103611_043483_05311F_8F62_NR_Orb_Cal_Spk_TC_dB.tif'
out_dir = r'H:\Datasets\Objects\TobacooLeafRecognition\Data'
out_path = os.path.join(out_dir, 'vv_vh.tiff')
vh_name = 'bands/Sigma0_VH_db'
vv_name = 'bands/Sigma0_VV_db'
metadata_name = 'metadata/Abstracted_Metadata'
lon_min_name = 'first_near_long'
lon_max_name = 'last_far_long'
lat_min_name = 'last_far_lat'
lat_max_name = 'first_near_lat'
lon_res_name = 'lon_pixel_res'
lat_res_name = 'lat_pixel_res'# 探索HDF5文件
with h5py.File(h5_path) as h5:vh, vv = h5[vh_name][:], h5[vv_name][:]metadata = h5[metadata_name]lon_min = metadata.attrs[lon_min_name]lon_max = metadata.attrs[lon_max_name]lat_min = metadata.attrs[lat_min_name]lat_max = metadata.attrs[lat_max_name]lon_res = metadata.attrs[lon_res_name]lat_res = metadata.attrs[lat_res_name]
# 提取栅格信息
rows, cols = vv.shape
transform = [lon_min, lon_res, 0, lat_max, 0, -lon_res]
# 定义地理信息(WGS84)
srs = osr.SpatialReference()
srs.ImportFromEPSG(4326)  # WGS84
# 输出
driver = gdal.GetDriverByName('GTiff')
ds = driver.Create(out_path, cols, rows, 2, gdal.GDT_Float32)
ds.SetProjection(srs.ExportToWkt())  # 设置坐标系
ds.SetGeoTransform(transform)  # 设置仿射参数
[ds.GetRasterBand(_ix+1).WriteArray(_band) for _ix, _band in enumerate([vv, vh])]  # 写入数据
ds.FlushCache()
ds = None
# 探索BigTIFF文件
ds = gdal.Open(tiff_path)
bands = ds.ReadAsArray()
proj = ds.GetProjection()
tiff_transform = ds.GetGeoTransform()
print('HDF5的proj: {}'.format(srs.ExportToWkt()))
print('BigTIFF的proj: {}'.format(proj))
print('HDF5的仿射变换参数: {}'.format(transform))
print('BigTIFF的proj: {}'.format(tiff_transform))

输出:

HDF5的proj: GEOGCS["WGS 84",DATUM["WGS_1984",SPHEROID["WGS84",6378137,298.257223563,AUTHORITY["EPSG","7030"]],AUTHORITY["EPSG","6326"]],PRIMEM["Greenwich",0,AUTHORITY["EPSG","8901"]],UNIT["degree",0.0174532925199433,AUTHORITY["EPSG","9122"]],AXIS["Latitude",NORTH],AXIS["Longitude",EAST],AUTHORITY["EPSG","4326"]]BigTIFF的proj: GEOGCS["WGS 84",DATUM["WGS_1984",SPHEROID["WGS 84",6378137,298.257223563,AUTHORITY["EPSG","7030"]],AUTHORITY["EPSG","6326"]],PRIMEM["Greenwich",0],UNIT["degree",0.0174532925199433,AUTHORITY["EPSG","9122"]],AXIS["Latitude",NORTH],AXIS["Longitude",EAST],AUTHORITY["EPSG","4326"]]HDF5的仿射变换参数: [106.20485428671394, 8.983152841195215e-05, 0, 30.710711909958782, 0, -8.983152841195215e-05]BigTIFF的proj: (106.20485428671394, 8.983152841195215e-05, 0.0, 30.710711909958782, 0.0, -8.983152841195215e-05)

基本上一致

HDF5输出与BigTIFF对比

这篇关于Python:(Sentinel-1)如何解析SNAP输出的HDF5文件并输出为GeoTIFF?的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/510879

相关文章

网页解析 lxml 库--实战

lxml库使用流程 lxml 是 Python 的第三方解析库,完全使用 Python 语言编写,它对 XPath表达式提供了良好的支 持,因此能够了高效地解析 HTML/XML 文档。本节讲解如何通过 lxml 库解析 HTML 文档。 pip install lxml lxm| 库提供了一个 etree 模块,该模块专门用来解析 HTML/XML 文档,下面来介绍一下 lxml 库

python: 多模块(.py)中全局变量的导入

文章目录 global关键字可变类型和不可变类型数据的内存地址单模块(单个py文件)的全局变量示例总结 多模块(多个py文件)的全局变量from x import x导入全局变量示例 import x导入全局变量示例 总结 global关键字 global 的作用范围是模块(.py)级别: 当你在一个模块(文件)中使用 global 声明变量时,这个变量只在该模块的全局命名空

【C++】_list常用方法解析及模拟实现

相信自己的力量,只要对自己始终保持信心,尽自己最大努力去完成任何事,就算事情最终结果是失败了,努力了也不留遗憾。💓💓💓 目录   ✨说在前面 🍋知识点一:什么是list? •🌰1.list的定义 •🌰2.list的基本特性 •🌰3.常用接口介绍 🍋知识点二:list常用接口 •🌰1.默认成员函数 🔥构造函数(⭐) 🔥析构函数 •🌰2.list对象

【Python编程】Linux创建虚拟环境并配置与notebook相连接

1.创建 使用 venv 创建虚拟环境。例如,在当前目录下创建一个名为 myenv 的虚拟环境: python3 -m venv myenv 2.激活 激活虚拟环境使其成为当前终端会话的活动环境。运行: source myenv/bin/activate 3.与notebook连接 在虚拟环境中,使用 pip 安装 Jupyter 和 ipykernel: pip instal

【机器学习】高斯过程的基本概念和应用领域以及在python中的实例

引言 高斯过程(Gaussian Process,简称GP)是一种概率模型,用于描述一组随机变量的联合概率分布,其中任何一个有限维度的子集都具有高斯分布 文章目录 引言一、高斯过程1.1 基本定义1.1.1 随机过程1.1.2 高斯分布 1.2 高斯过程的特性1.2.1 联合高斯性1.2.2 均值函数1.2.3 协方差函数(或核函数) 1.3 核函数1.4 高斯过程回归(Gauss

【学习笔记】 陈强-机器学习-Python-Ch15 人工神经网络(1)sklearn

系列文章目录 监督学习:参数方法 【学习笔记】 陈强-机器学习-Python-Ch4 线性回归 【学习笔记】 陈强-机器学习-Python-Ch5 逻辑回归 【课后题练习】 陈强-机器学习-Python-Ch5 逻辑回归(SAheart.csv) 【学习笔记】 陈强-机器学习-Python-Ch6 多项逻辑回归 【学习笔记 及 课后题练习】 陈强-机器学习-Python-Ch7 判别分析 【学

nudepy,一个有趣的 Python 库!

更多资料获取 📚 个人网站:ipengtao.com 大家好,今天为大家分享一个有趣的 Python 库 - nudepy。 Github地址:https://github.com/hhatto/nude.py 在图像处理和计算机视觉应用中,检测图像中的不适当内容(例如裸露图像)是一个重要的任务。nudepy 是一个基于 Python 的库,专门用于检测图像中的不适当内容。该

pip-tools:打造可重复、可控的 Python 开发环境,解决依赖关系,让代码更稳定

在 Python 开发中,管理依赖关系是一项繁琐且容易出错的任务。手动更新依赖版本、处理冲突、确保一致性等等,都可能让开发者感到头疼。而 pip-tools 为开发者提供了一套稳定可靠的解决方案。 什么是 pip-tools? pip-tools 是一组命令行工具,旨在简化 Python 依赖关系的管理,确保项目环境的稳定性和可重复性。它主要包含两个核心工具:pip-compile 和 pip

顺序表之创建,判满,插入,输出

文章目录 🍊自我介绍🍊创建一个空的顺序表,为结构体在堆区分配空间🍊插入数据🍊输出数据🍊判断顺序表是否满了,满了返回值1,否则返回0🍊main函数 你的点赞评论就是对博主最大的鼓励 当然喜欢的小伙伴可以:点赞+关注+评论+收藏(一键四连)哦~ 🍊自我介绍   Hello,大家好,我是小珑也要变强(也是小珑),我是易编程·终身成长社群的一名“创始团队·嘉宾”

OWASP十大安全漏洞解析

OWASP(开放式Web应用程序安全项目)发布的“十大安全漏洞”列表是Web应用程序安全领域的权威指南,它总结了Web应用程序中最常见、最危险的安全隐患。以下是对OWASP十大安全漏洞的详细解析: 1. 注入漏洞(Injection) 描述:攻击者通过在应用程序的输入数据中插入恶意代码,从而控制应用程序的行为。常见的注入类型包括SQL注入、OS命令注入、LDAP注入等。 影响:可能导致数据泄