LCEL(Lang Chain Expression Language) 介绍:LangChain 的开发提效技巧

本文主要是介绍LCEL(Lang Chain Expression Language) 介绍:LangChain 的开发提效技巧,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

LCEL 介绍

LCEL(Lang Chain Expression Language)是将一些有趣的 Python 概念抽象成一种格式,使得可以构建 LangChain 组件链的 “极简主义” 代码层。

LCEL 具有以下强大的支持:

  • 超快速开发链。
  • 高级特性,如流式处理、异步、并行执行等。
  • 与 LangSmith 和 LangServe 等工具集成。

在本章节中,我们将介绍 LCEL 是什么,它是如何工作的,以及 LCEL 链、管道(pipe)和可运行项(Runnable)的基本要点。

LCEL 语法样例
  • 为了理解 LCEL 语法,让我们首先使用传统的 LangChain 语法构建一个简单的链。
# 导入所需的模块和类
from langchain.chat_models import ChatOpenAI
from langchain.prompts import ChatPromptTemplate
from langchain.schema.output_parser import StrOutputParser
from langchain.chains import LLMChain# 创建聊天提示模板,指定要获取关于的主题
prompt = ChatPromptTemplate.from_template("给我一个关于{topic}的一句话介绍"
)# 创建ChatOpenAI模型实例
model = ChatOpenAI(temperature=0)# 创建输出解析器实例
output_parser = StrOutputParser()# 创建LLMChain链,将聊天提示、模型和输出解析器组合在一起
chain = LLMChain(prompt=prompt,llm=model,output_parser=output_parser
)# 运行链,并指定主题为"大语言模型"
out = chain.run(topic="大语言模型")
print(out)
# -> 大语言模型是一种基于深度学习的人工智能技术,能够自动学习和生成自然语言文本,具有广泛的应用领域,如机器翻译、文本生成和对话系统等

这个链的目标是使用 ChatOpenAI 模型生成一个简短的关于指定主题的介绍。我们通过设置温度参数为 0,确保模型生成的输出更加确定性,使得结果更加精确和可控。

  • 而通过 LCEL 语法,我们使用管道操作符(|)而不是 LLMChain 来创建我们的链。
# 使用 LangChain Expression Language(LCEL)创建链
lcel_chain = prompt | model | output_parser# 运行链,并通过字典传递主题为"大语言模型"
out = lcel_chain.invoke({"topic": "大语言模型"})
print(out)
# -> 大语言模型是一种基于深度学习的人工智能技术,能够自动学习和生成自然语言文本,具有广泛的应用领域,如机器翻译、文本生成和对话系统等

这里的语法并不典型于Python,但只使用了原生Python。| 操作符简单地将左侧的输出传递给右侧的函数。

管道运算符的工作原理

为了理解 LCEL 和管道运算符的工作原理,我们创建自己的管道兼容函数。

当 Python 解释器在两个对象之间看到 | 运算符(如 a | b)时,它会尝试将对象 a 传递给对象 b__or__ 方法。这意味着这些模式是等价的:

# 对象方法
chain = a.__or__(b)
chain("一些输入")# 管道方法
chain = a | b
chain("一些输入")

考虑到这一点,我们可以构建一个 Runnable 类,它接受一个函数并将其转换为可以使用管道运算符 | 与其他函数链接的函数。

class Runnable:def __init__(self, func):self.func = funcdef __or__(self, other):def chained_func(*args, **kwargs):# 其他函数使用这个函数的结果return other(self.func(*args, **kwargs))return Runnable(chained_func)def __call__(self, *args, **kwargs):return self.func(*args, **kwargs)

让我们实现这个,取值 3,加上 5(得到 8),然后乘以 2,最后期望得到 16。

def add_five(x):return x + 5def multiply_by_two(x):return x * 2# 使用 Runnable 包装这些函数
add_five = Runnable(add_five)
multiply_by_two = Runnable(multiply_by_two)# 使用对象方法运行它们
chain = add_five.__or__(multiply_by_two)
print(chain(3))  # (3 + 5) * 2 = 16
# -> 16

直接使用 __or__ 我们会得到正确答案,让我们尝试使用管道操作符 | 将它们链接在一起:

# 将可运行的函数链接在一起
chain = add_five | multiply_by_two# 调用链
print(chain(3))  # (3 + 5) * 2 = 16
# -> 16

无论使用哪种方法,我们都会得到相同的响应,这就是 LCEL 在链接组件时使用的管道逻辑。

RunnableLambda 是一个 LangChain 抽象,它允许我们将 Python 函数转换为与管道兼容的函数,类似于我们在之前介绍的 Runnable 类。
让我们尝试一下我们之前的 add_fivemultiply_by_two 函数。

from langchain_core.runnables import RunnableLambda# 使用 RunnableLambda 包装这些函数
add_five = RunnableLambda(add_five)
multiply_by_two = RunnableLambda(multiply_by_two)

与之前的 Runnable 抽象类似,我们可以使用 | 运算符将 RunnableLambda 抽象连接在一起:

# 将可运行的函数链接在一起
chain = add_five | multiply_by_two

与我们的 Runnable 抽象不同,我们不能通过直接调用它来运行 RunnableLambda 链,而是必须调用 chain.invoke

# 调用链
print(chain.invoke(3))
# -> 16

可以看到使用 RunnableLambda 获得了和 Runnable 类似的结果。

LCEL 介绍小结

以上内容概述了 LangChain 表达语言(LCEL)的基础知识,通过 LCEL 我们可以轻松地构建链式结构。

LCEL 的优劣势多种多样。喜欢 LCEL 的人通常注重其极简的代码风格,以及对流式、并行操作和异步的支持,同时也看好 LCEL 与 LangChain 在组件链式连接方面的良好集成。

然而,有些人对 LCEL 持有不太喜欢的态度。这些人通常指出 LCEL 是对已经非常抽象的库再加一层抽象,语法令人困扰,违背了 Python 之禅,并且需要花费较多的时间来学习新的(或不太常见的)语法。

这两种观点都是有道理的,因为 LCEL 是一种极为不同的方法。然而,由于 LCEL 具有快速开发的特性,目前在 LangChain 开源社区中被广泛使用。对 LCEL 原理的简单了解将有助于读者在今后使用各种 LangChain 代码时更加得心应手。

这篇关于LCEL(Lang Chain Expression Language) 介绍:LangChain 的开发提效技巧的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/506812

相关文章

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

这15个Vue指令,让你的项目开发爽到爆

1. V-Hotkey 仓库地址: github.com/Dafrok/v-ho… Demo: 戳这里 https://dafrok.github.io/v-hotkey 安装: npm install --save v-hotkey 这个指令可以给组件绑定一个或多个快捷键。你想要通过按下 Escape 键后隐藏某个组件,按住 Control 和回车键再显示它吗?小菜一碟: <template

性能测试介绍

性能测试是一种测试方法,旨在评估系统、应用程序或组件在现实场景中的性能表现和可靠性。它通常用于衡量系统在不同负载条件下的响应时间、吞吐量、资源利用率、稳定性和可扩展性等关键指标。 为什么要进行性能测试 通过性能测试,可以确定系统是否能够满足预期的性能要求,找出性能瓶颈和潜在的问题,并进行优化和调整。 发现性能瓶颈:性能测试可以帮助发现系统的性能瓶颈,即系统在高负载或高并发情况下可能出现的问题

水位雨量在线监测系统概述及应用介绍

在当今社会,随着科技的飞速发展,各种智能监测系统已成为保障公共安全、促进资源管理和环境保护的重要工具。其中,水位雨量在线监测系统作为自然灾害预警、水资源管理及水利工程运行的关键技术,其重要性不言而喻。 一、水位雨量在线监测系统的基本原理 水位雨量在线监测系统主要由数据采集单元、数据传输网络、数据处理中心及用户终端四大部分构成,形成了一个完整的闭环系统。 数据采集单元:这是系统的“眼睛”,

Hadoop企业开发案例调优场景

需求 (1)需求:从1G数据中,统计每个单词出现次数。服务器3台,每台配置4G内存,4核CPU,4线程。 (2)需求分析: 1G / 128m = 8个MapTask;1个ReduceTask;1个mrAppMaster 平均每个节点运行10个 / 3台 ≈ 3个任务(4    3    3) HDFS参数调优 (1)修改:hadoop-env.sh export HDFS_NAMENOD

Hadoop数据压缩使用介绍

一、压缩原则 (1)运算密集型的Job,少用压缩 (2)IO密集型的Job,多用压缩 二、压缩算法比较 三、压缩位置选择 四、压缩参数配置 1)为了支持多种压缩/解压缩算法,Hadoop引入了编码/解码器 2)要在Hadoop中启用压缩,可以配置如下参数

嵌入式QT开发:构建高效智能的嵌入式系统

摘要: 本文深入探讨了嵌入式 QT 相关的各个方面。从 QT 框架的基础架构和核心概念出发,详细阐述了其在嵌入式环境中的优势与特点。文中分析了嵌入式 QT 的开发环境搭建过程,包括交叉编译工具链的配置等关键步骤。进一步探讨了嵌入式 QT 的界面设计与开发,涵盖了从基本控件的使用到复杂界面布局的构建。同时也深入研究了信号与槽机制在嵌入式系统中的应用,以及嵌入式 QT 与硬件设备的交互,包括输入输出设

OpenHarmony鸿蒙开发( Beta5.0)无感配网详解

1、简介 无感配网是指在设备联网过程中无需输入热点相关账号信息,即可快速实现设备配网,是一种兼顾高效性、可靠性和安全性的配网方式。 2、配网原理 2.1 通信原理 手机和智能设备之间的信息传递,利用特有的NAN协议实现。利用手机和智能设备之间的WiFi 感知订阅、发布能力,实现了数字管家应用和设备之间的发现。在完成设备间的认证和响应后,即可发送相关配网数据。同时还支持与常规Sof

活用c4d官方开发文档查询代码

当你问AI助手比如豆包,如何用python禁止掉xpresso标签时候,它会提示到 这时候要用到两个东西。https://developers.maxon.net/论坛搜索和开发文档 比如这里我就在官方找到正确的id描述 然后我就把参数标签换过来

购买磨轮平衡机时应该注意什么问题和技巧

在购买磨轮平衡机时,您应该注意以下几个关键点: 平衡精度 平衡精度是衡量平衡机性能的核心指标,直接影响到不平衡量的检测与校准的准确性,从而决定磨轮的振动和噪声水平。高精度的平衡机能显著减少振动和噪声,提高磨削加工的精度。 转速范围 宽广的转速范围意味着平衡机能够处理更多种类的磨轮,适应不同的工作条件和规格要求。 振动监测能力 振动监测能力是评估平衡机性能的重要因素。通过传感器实时监