TCP报文头(首部)详解

2023-12-17 16:28
文章标签 详解 tcp 报文 首部

本文主要是介绍TCP报文头(首部)详解,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

        本篇文章基于 RFC 9293: Transmission Control Protocol (TCP) 对TCP报头进行讲解,部分内容会与旧版本有些许区别。

        TCP协议传输的数据单元是报文段,一个报文段由TCP首部(报文头)和TCP数据两部分组成,其中TCP首部尤其重要,首部用于控制(新建、断开)连接、流量和拥塞等。TCP首部的固定长度是20B,最大长度是60B,其中可变选项长度最长为40B(4B×10)。

 字段解释

  • 源端口(Source Port):占用 2 Byte,标识发送方应用程序使用的端口号;
  • 目的端口(Destination Port):占用 2 Byte,标识发送方应用程序的目标端口号,也就是接收方应用程序的端口号
  • 序号(Seq,Sequence Number):占用 4 Byte,范围是[0, 2^32),标识TCP报文段中的第一个字节数据的序列号,用于保证传输数据的可靠性和顺序性。TCP是一个面向字节流的传输控制协议,且支持全双工通信,所以为了保证发送方和接收方都能独立进行传输,两端通信时都必须得知道各自分别发送和接收了多少个字节数据(不含TCP首部),以及接收到数据后如何进行读取、拼接组合。TCP发送方用Seq字段告知接收方自建立连接以来我方已累计(不包含本报文段)已发送了Seq-1个字节数据,本次传输的报文数据第一个字节序列号是Seq,而接收方在成功接收完一段或多段数据后可以根据Seq的大小顺序对数据进行拼接组合,并且用Ack字段告知发送方我方已成功接收了Ack-1个字节数据,期望下次接收的报文段是从Ack序号开始。【为什么都要减1呢?因为TCP成功建立连接后Seq和Ack都会置为1,所以Seq和Ack的起始值都是1。第N次发送数据时的 Seq = Seq初始值1 + 第1次发送的字节长度 + ··· + 第N-1次发送的数据字节长度,也就是第N次发送数据时的 Seq = 第N-1次发送数据时的 Seq + 第N-1次发送的数据字节长度】。请注意,TCP建立连接和断开连接时Seq和Ack跟TCP报文数据长度无关。当Seq到达2^32-1(4GB内容.....)后又会从0重新开始。
  • 确认号(Ack,Acknowledgment Number):占用 4 Byte,标识接收方期望收到下一个报文段的序列号是Ack,也可以理解成接收方已成功接收了Ack-1个字节数据。只有标志位ACK为1时确认号才有效。接收方在成功接收完数据后需要给发送方一个确认,告诉发送方已收到某个报文段(事实上,接收方往往是在成功接收了多条报文段后才发送一次Ack)。

  • 数据偏移(Data Offset):占用 4 bit,标识TCP报文段中报文数据的起始位置距离报文段开始位置有多远,也就是TCP的首部长度是多少,单位是32bit(4字节)。从下图可以看到TCP首部长度 Header Length 为 0101,转换成十进制是5,4Byte × 5 = 20 Byte。而TCP首部固定长度是20Byte,可变长度是40 Byte,最长是60 Byte,所以数据偏移值最小是5,最大是15,[0101, 1111]。

  • 保留(Reserved):占用 3 bit预留给未来使用的一组控制位,目前该值设置为0。TCP首部的数据偏移(首部长度)、保留位和标志位公用16 bit,也就是2 byte,其中数据偏移独占4 bit,保留位和标志位一共可分配12 bit,如果我们把保留位Reserved也当成一个预留的或空白的标志位,那么完全可以理解成TCP最多可分配12个标志位,目前(rfc9293版)已明确的标志位共有8个,还有1个处于实验阶段的标志位AE,一共是9个标志位,每个标志位占用1 bit,剩余的3 bit由Reserved占用。
  • 标志位(Flags):也叫控制位,每一个标志位占用 1 bit。目前已有9个标志位,包括AE、CWR、ECE、URG、ACK、PSH、RST、SYN和FIN,值为0或1,用于控制TCP的拥塞、连接的建立、管理和关闭等。
    1. AE(Accurate ECN):处于试验期的标志位。外文资料也比较少,看了半天也不知道是用来干嘛的,暂且搁置吧。
    2. CWR(Congestion Window Reduce):拥塞窗口减半标志,发送端通过降低“cwnd”和“ssthresh”来应对网络拥塞。CWR和ECE都是用来控制网络拥塞的,而CWR是用来响应ECE的,所以在了解CWR作用之前,我们得先搞懂ECE是用来干嘛的。Explicit Congestion Notification,翻译过来就是“显式拥塞通知”,简写ECN。数据报在发送方发出后可能要经过多个路由器才能到达接收方,如果中间某个路由器根据算法结果判断出自身发生了拥塞,就会在报文的IP首部设置CE标志(ECE),接收方在接收到这段报文后,发现IP头设置了CE标志,表明数据发送途中网络有拥塞,得赶紧把这个消息告诉发送方,不然可能要丢包。接收方在后续返回给发送方的每一条ACK报文都会设置ECN-Echo(ECE)为1,用于告知发送方从贵方到我方的网络有拥塞。而发送方在接收到对方返回的ECE报文后,得知网络有拥塞,就会将拥塞窗口“cwnd”减半,并降低慢启动阈值“ssthresh”,之后再发送CWR报文给接收方,接收方收到CWR报文后表明发送方也采取相应措施来应对网络拥塞,随后便不再发送ECE报文。请注意,数据重传时,TCP报头中不会设置CWR标志位。
    3. ECE(ECN-Echo):用于通知对方,从对方到我方的网络有拥塞。如果发送方收到ECN-Echo (ECE) ACK包(即TCP报头中设置了ECN-Echo标志的ACK包),则发送方知道在从发送方到接收方的路径上遇到了网络拥塞。
    4. URGUrgent):标识是否为紧急报文,配合紧急指针(urgent pointer)一起使用,值为0或1 。当标志位URG为1时,表明该报文段有紧急数据需要尽快发送(发送端此时不会把报文数据写入到缓冲区,而是直接发送给应用层),即使对端窗口大小此时为0系统也要以高优先级发送该段报文,紧急数据会放在TCP报文段数据部分的最前端,紧急指针用于标识紧急数据在TCP报文段数据部分的结束位置,紧急数据之后的字节内容依然是普通数据。
    5. ACKAcknowledgment):标识确认应答是否有效,配合确认号(Ack,Acknowledgment Number)一起使用,值为0或1 。当标志位ACK为1时,确认号Ack才有效。除了最初建立连接时发送的SYN报文段之外,其它情况下发送的报文段ACK都为1。
    6. PSHPush):标识是否立即把报文数据推送给应用层,值为0或1。如果TCP接收方接收到PSH为1的报文段,应尽快把这段报文数据从接收缓冲区中读出并立即推送给应用层,不必等到缓冲区写满后再推送。常用于请求方发送完一个新请求后希望立即得到对端的响应。

    7. RSTReset):标识是否重置连接,值为0或1 。当RST为1时,表明TCP连接发生错误,需要先强制断开连接,再重新建立新的连接,称之为复位TCP连接,这种报文也称之为复位报文段
    8. SYNSynchronize):该标志位用于在建立连接时同步Seq和Ack的初始值,仅在建立连接时使用。TCP三次握手中,第一次握手时,客户端先发送“SYN=1,ACK=0”的报文段,表示请求建立,第二次握手时,如果服务端同意建立连接就返回“SYN=1,ACK=1的报文段。我们把含有SYN标志位的报文称为同步报文段
    9. FINFinish):该标志位用于断开/释放连接,仅在断开连接时使用。当通信结束后需要断开连接时,主动要求断开连接的一方会发送“FIN=1,ACK=1”的报文段给对端,告知对端通信已结束希望断开连接,对端接收后会相应地返回“ACK=1”的报文段,至此连接会彻底关闭。我们把含有FIN标志位的报文称为结束报文段

  • 窗口(Window):占用 2 Byte(16bit),表示TCP接收方当前可用的最大缓冲区(Receive Buffer)大小,常配合Options字段中的Window Scale一起使用用于实现滑动窗口机制,对流量进行控制(接收方通过Window告知发送方我方剩余的接收缓冲区还剩这么多,发送发会根据Window大小灵活调整发送速率,从而避免网络拥塞并确保通信的稳定性)。注意,Window大小值有时候并不代表当前的实际可用窗口大小,因为Window共占用16位,最大值是2^16-1,也就是64K(65535),在当前的网络高带宽情况下,64K显然已无法满足大部分的网络通信,所以后来就在TCP的Options字段中新增了Window Scale对窗口进行放大,Window Scale代表的是一个向左的位移值(Shift count),最大值是14。二进制数据每增加一位1,其换算指数都会加1,所以实际窗口大小最大允许值应该是 2^(16+14) -1 = 2^30 - 1,长达1Gb。TCP在建立连接时的前两次握手过程中,双方都会用Window Scale来向对端声明我方的窗口放大因子并缓存对端的窗口放大因子,后期通信过程中不再声明,仅发送Window,双方会用对方的Window和Window Scale来计算实际的窗口大小,并根据实际窗口大小调整发送速率(如果窗口为0,发送方会定期进行窗口探测)。用图说话

  • 校验和(Checksum):占用 2 Byte,接收方校验接收的数据是否与发送的数据完全一致,用于保证数据的完整性和准确性Checksum是一个强制字段,发送方必须生成并发送它,接收方必须检查它。数据在传输过程可能会出错,所以TCP发送方在发送数据前会先根据伪首部、报文段首部和报文段数据计算校验和值,并将最终得到的值写入Checksum字段。而接收方在收到此报文段后,会根据伪首部、报文段首部和报文段数据再次计算校验和值,如果结果是0,说明数据一致,否则丢弃数据并报告发送方重传这段数据。

TCP发送方计算校验和过程:

        1.先将TCP报文段首部中的Checksum字段置为0,因为Checksum本身也要参与计算;

        2.将伪首部、TCP报文段首部和TCP报文段数据连在一起并分成若干个16位的位串,看是否是偶数个字节(所有数据是否对齐),如果不是则在右侧填充一个全为0的8位位串(填充段仅用于计算校验和值,不会传输给接收方),将每个16位位串看成一个二进制数;

        3.对这些16位的二进制数进行1的补码和运算(one's complement sum),如果最高位有进位应循环进到最低位,累加的结果再取反码即得到校验和;

        4.将校验写入TCP报文首部的Checksum字段。

TCP接收方检查校验和过程:

        1.接收方将伪首部、TCP报文段首部和TCP报文段数据按发送方同样的方式(不包含发送方的第1步操作)进行1的补码和运算,累加的结果再取反码

        2.校验,如果上步的结果为0,表示传输正确;否则,说明传输有差错。 

  • 紧急指针(Urgent Pointer):占用 2 Byte,也称紧急偏移,用于标识紧急数据在TCP报文段数据部分的结束位置/正的偏移量。只有当标志位URG为1时该参数才有效。紧急数据是放在TCP报文段数据部分的最前端,紧急指针用于标识紧急数据在TCP报文段数据部分的结束位置,紧急数据之后的字节内容依然是普通数据。
  • 选项(Options):占用 0~40 Byte,可选字段,用于传输TCP报文的附加信息,Options所有选项也都包含在校验和中。仅Data Offset > 5 时Options才会出现,size(Options) = (Data Offset - 5)×32,每个option的长度必须是8bit的整倍数(最短1个字节),且Options总长度也必须是32bit(4字节)的整倍数如果某个option的长度不够4字节,那么就用“No-Operation(占用1字节)”来补充位数(都是补高位),缺几个字节就补几个“No-Operation”。请注意,当整个选项列表的结束位置无法与TCP报头尾部对齐时,TCP会在整个选项(all options, not each option)列表的尾部填充“End of Option List”选项综上可知,size包含了补位和填充的数据长度。一个option由Kind、Length和Data三部分组成,其中Length和Data是选填参数,Length表示的是当前这个option的总长度,它包含Kind、Length和Data三者总共占用的位数。

常用option如下表:

KindLengthMeaningReference
0-End of Option ListRFC9293仅用于填充整个选项列表尾部。
1-No-Operation,NOPRFC9293补位选项。
24Maximum Segment Size,MSSRFC9293最大报文段长度,具体限制的是TCP报文段中数据部分的长度。
33Window ScaleRFC7323窗口放大因子
42SACK PermittedRFC2018标识是否支持SACK,只有在建立连接时SYN报段使用。
5NSelective Acknowledgment,SACKRFC2018选择性确认,用于数据重传机制。接收方可通过SACK参数告知发送方我方收到了不连续的数据块(Ack=200,SACK=200-400),发送方可根据此信息检查哪部分数据丢失(对方收到200字节数据,接收到的是200-400段,说明0-199段丢失了)并重传这段数据。
810TimestampsRFC7323时间戳

完整的options list请参阅:Transmission Control Protocol (TCP) Parameters/tcp-parameters-1 


参考文章

        RFC 9293: Transmission Control Protocol (TCP) 

        Transmission Control Protocol (TCP) Parameters   TCP所有字段、标志位和参数在这里都能找到!

        RFC 3168: The Addition of Explicit Congestion Notification (ECN) to IP

        draft-ietf-tcpm-accurate-ecn-28 - More Accurate Explicit Congestion Notification (ECN) Feedback in TCP        Accurate ECN

        draft-kuehlewind-tcpm-accurate-ecn-05 - More Accurate ECN Feedback in TCP                 Accurate ECN

        RFC 2018: TCP Selective Acknowledgment Options                                                            Options:SACK

        RFC 2883: An Extension to the Selective Acknowledgement (SACK) Option for TCP         Options:SACK

        RFC 7323: TCP Extensions for High Performance                                                                Optinos:Window Scale、Timestamps

这篇关于TCP报文头(首部)详解的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/505026

相关文章

Spring Security基于数据库验证流程详解

Spring Security 校验流程图 相关解释说明(认真看哦) AbstractAuthenticationProcessingFilter 抽象类 /*** 调用 #requiresAuthentication(HttpServletRequest, HttpServletResponse) 决定是否需要进行验证操作。* 如果需要验证,则会调用 #attemptAuthentica

OpenHarmony鸿蒙开发( Beta5.0)无感配网详解

1、简介 无感配网是指在设备联网过程中无需输入热点相关账号信息,即可快速实现设备配网,是一种兼顾高效性、可靠性和安全性的配网方式。 2、配网原理 2.1 通信原理 手机和智能设备之间的信息传递,利用特有的NAN协议实现。利用手机和智能设备之间的WiFi 感知订阅、发布能力,实现了数字管家应用和设备之间的发现。在完成设备间的认证和响应后,即可发送相关配网数据。同时还支持与常规Sof

6.1.数据结构-c/c++堆详解下篇(堆排序,TopK问题)

上篇:6.1.数据结构-c/c++模拟实现堆上篇(向下,上调整算法,建堆,增删数据)-CSDN博客 本章重点 1.使用堆来完成堆排序 2.使用堆解决TopK问题 目录 一.堆排序 1.1 思路 1.2 代码 1.3 简单测试 二.TopK问题 2.1 思路(求最小): 2.2 C语言代码(手写堆) 2.3 C++代码(使用优先级队列 priority_queue)

K8S(Kubernetes)开源的容器编排平台安装步骤详解

K8S(Kubernetes)是一个开源的容器编排平台,用于自动化部署、扩展和管理容器化应用程序。以下是K8S容器编排平台的安装步骤、使用方式及特点的概述: 安装步骤: 安装Docker:K8S需要基于Docker来运行容器化应用程序。首先要在所有节点上安装Docker引擎。 安装Kubernetes Master:在集群中选择一台主机作为Master节点,安装K8S的控制平面组件,如AP

嵌入式Openharmony系统构建与启动详解

大家好,今天主要给大家分享一下,如何构建Openharmony子系统以及系统的启动过程分解。 第一:OpenHarmony系统构建      首先熟悉一下,构建系统是一种自动化处理工具的集合,通过将源代码文件进行一系列处理,最终生成和用户可以使用的目标文件。这里的目标文件包括静态链接库文件、动态链接库文件、可执行文件、脚本文件、配置文件等。      我们在编写hellowor

LabVIEW FIFO详解

在LabVIEW的FPGA开发中,FIFO(先入先出队列)是常用的数据传输机制。通过配置FIFO的属性,工程师可以在FPGA和主机之间,或不同FPGA VIs之间进行高效的数据传输。根据具体需求,FIFO有多种类型与实现方式,包括目标范围内FIFO(Target-Scoped)、DMA FIFO以及点对点流(Peer-to-Peer)。 FIFO类型 **目标范围FIFO(Target-Sc

019、JOptionPane类的常用静态方法详解

目录 JOptionPane类的常用静态方法详解 1. showInputDialog()方法 1.1基本用法 1.2带有默认值的输入框 1.3带有选项的输入对话框 1.4自定义图标的输入对话框 2. showConfirmDialog()方法 2.1基本用法 2.2自定义按钮和图标 2.3带有自定义组件的确认对话框 3. showMessageDialog()方法 3.1

脏页的标记方式详解

脏页的标记方式 一、引言 在数据库系统中,脏页是指那些被修改过但还未写入磁盘的数据页。为了有效地管理这些脏页并确保数据的一致性,数据库需要对脏页进行标记。了解脏页的标记方式对于理解数据库的内部工作机制和优化性能至关重要。 二、脏页产生的过程 当数据库中的数据被修改时,这些修改首先会在内存中的缓冲池(Buffer Pool)中进行。例如,执行一条 UPDATE 语句修改了某一行数据,对应的缓

【Go】go连接clickhouse使用TCP协议

离开你是傻是对是错 是看破是软弱 这结果是爱是恨或者是什么 如果是种解脱 怎么会还有眷恋在我心窝 那么爱你为什么                      🎵 黄品源/莫文蔚《那么爱你为什么》 package mainimport ("context""fmt""log""time""github.com/ClickHouse/clickhouse-go/v2")func main(

2024.9.8 TCP/IP协议学习笔记

1.所谓的层就是数据交换的深度,电脑点对点就是单层,物理层,加上集线器还是物理层,加上交换机就变成链路层了,有地址表,路由器就到了第三层网络层,每个端口都有一个mac地址 2.A 给 C 发数据包,怎么知道是否要通过路由器转发呢?答案:子网 3.将源 IP 与目的 IP 分别同这个子网掩码进行与运算****,相等则是在一个子网,不相等就是在不同子网 4.A 如何知道,哪个设备是路由器?答案:在 A