pybind11:实现ndarray转C++原生数组

2023-12-17 10:52

本文主要是介绍pybind11:实现ndarray转C++原生数组,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

前言

之所以要将ndarray(numpy的通用数据类型)转为C++的原生数组,或者说在Python中调用C++编译好的二级制文件中的函数这个事的核心原因在于Python作为一门解释型语言,最大的诟病便是它的运行速度过于慢,最典型的例子就是循环

Python的执行循环的速度远远慢于C++这样的编译型语言,具体原因在这里不过多解释。基于编译形语言的这个优点,我在做科学计算的时候,涉及到一些需要用到自主编写的计算量较为庞大的算法时,通常会选择采用C++编写,但是由于Python做数据分析和科学计算的便利性,我的主程序框架又通常都是基于Python开发的,所以需要在Python的调用C++编写好的函数以提高运算效率。

具体怎么使用pybind11在Python代码中调用编译好的C++二级制文件请参考我的另一篇博客:pybind11:实现Python调用C++代码(入门)

调用函数,离不开参数(C++的各种数据结构),做数据分析和计算离不开numpy,于是就需要解决一个核心问题:ndarray转C++原生数组,然后通过C++程序计算后将计算结果(C++数组)再转为 ndarray,实现C++与Python的无缝衔接。

阅读官方文档

官方文档永远是最好的学习材料,找到pybind官方文档的网址:https://pybind11.readthedocs.io/en/stable/index.html
这个文档对于C++和Python的数据类型的转化以及底层原理写的都比较详细,对这方面感兴趣的朋友可慢慢参考,我主要介绍其中的核心方法来实现我的目标问题。

在目录那一栏找到 Python C++ interface 中的 NumPy

mulu

里面主要介绍了 Numpy 如何与C++联动,我选择 Vectorizing functions 中的一个比较好的例子展开说明:

lizi

简单读一下这个代码,

这是一个C++代码,编写了一个返回值类型和接受参数类型都为py::array_t<double> 的函数,py::array_t<double>可以理解为在numpy.h 中的定义一个类模板,用于在C++代码中表示NumPy数组(即ndarray)的数据结构。

函数内部使用了py::buffer_info来获取输入数组的信息(request),包括维度(ndim)、形状(shape)、大小(size)等。然后进行了一些简单的错误检查,确保输入数组是一维的,且形状匹配。

接下来,函数创建了一个新的 py::array_t<double> 对象 result,它的大小与输入数组 input1 的大小(即buf1.size)相同。这个数组用于存储相加后的结果。

在对result进行request获取缓冲区信息后,将缓冲区指针转换为double*类型,并分别赋值给ptr1、ptr2和ptr3指针,指向输入数组和结果数组的内存位置。

接下来,使用一个循环遍历数组的每个元素(根据 buf1.shape[0] 的值),将相应位置上的input1和input2数组的元素相加,并将结果存储到result数组中。

最后,返回result数组,即相加后的结果。

利用PYBIND11_MODULE这个宏把 add_arrays 这个函数绑定到C++函数。

py::buffer_info(装载ndarray的信息的数据类型)的属性主要有:

shux
最常用的是ndim(维度)shape(形状)

采用这个代码made一个项目(记得更改模板名为你自己配置的模板名(PYBIND11_MODULE的第一个参数)),配置生成后,老套路,将生成的 pyd 文件拖放至与python脚本一个目录下便能使用add_arrays这个函数,实例如下(我的模板名叫 tryPybind):

import numpy as np
import tryPybind a = np.array([1, 2, 3])
b = np.array([3, 4, 5])
c = np.array([[1, 2, 3], [4, 5, 6]])
d = np.array([1, 2, 3, 4])e = tryPybind.add_arrays(a, b)
# f = tryPybind.add_arrays(a, c)  # RuntimeError: Number of dimensions must be one
# g = tryPybind.add_arrays(a, d)  # RuntimeError: Input shapes must matchprint(e)  # [4. 6. 8.]

如上便演示如何用C++代码计算ndarray,仔细观察便会发现,这个代码能实现的功能极少,且并其实并未将ndarray转为C++原生数组,只是在C++代码中基于ndarray进行运算,这样便不能套用编写好的C++算法,当然,这个代码仍然具有比较大的启发作用。下面我将介绍我自主编写的ndarray转C++原生数组的算法,具有很强的拓展性。

C++数组 --> ndarray

由于C++数组的数据结构比较简单,转为ndarray比较容易,只需两步:

  1. 创建输出数组(ndarray)
  2. 将C++数组的数据拷贝到输出数组(ndarray)

直接上代码(我只定义了一维和二维的情况,想要更高维度的代码类似)用到了C++的模板函数和函数重写:

template<typename T>
py::array_t<T> CToNdarray(T* Array, int len) {// 创建输出数组py::array_t<T> outputArray(len);auto outputArrayInfo = outputArray.request();T* outputPtr = static_cast<T*>(outputArrayInfo.ptr);// 将结果拷贝到输出数组for (int i = 0; i < len; ++i) {outputPtr[i] = Array[i];}return outputArray;
}template<typename T>
py::array_t<T> CToNdarray(T** Array, int rows, int cols) {// 创建输出数组py::array_t<T> outputArray({rows, cols});auto outputArrayInfo = outputArray.request();T* outputPtr = static_cast<T*>(outputArrayInfo.ptr);// 将结果拷贝到输出数组for (int i = 0; i < rows; ++i) {for (int j = 0; j < cols; ++j) {outputPtr[i * cols + j] = Array[i][j];}}return outputArray;
}

ndarray --> C++数组

ndarray是一种较为复杂的数据结构,具有很多属性,而C++的数组又是一种比较简单的数据结构,如果像C++转ndarray一样只拷贝数据而不做其他处理的话就会损失很多信息像形状,维度等,这些是从C++数组出发所无法计算得到的。

一个以C++数组为参数的算法往往需要数组的长度为参数,所以综合考虑,以类的形式储存C++数组(数组,形状,维度都以属性的形式存在于一个对象中)代码如下(同样只定义了一维和二维的情况):

// 将ndarray转化为C++数组
template <typename T = double>
class NdarrayToCppArray {
public:// 储存维度int dim;// 储存每个维度下的长度int* lens;// 存储一维向量T* Vector;// 存储二维矩阵T** Matrix;NdarrayToCppArray(py::array_t<T>& inputNdarray){// 计算维度this->dim = inputNdarray.ndim();// 处理输入的一维ndarrayauto inputNdarrayInfo = inputNdarray.request();T* inputNdarrayDataPtr = static_cast<T*>(inputNdarrayInfo.ptr);// 计算每个维度下的长度this->lens = new int[this->dim]; for (int i = 0; i < this->dim; i++){this->lens[i] = inputNdarrayInfo.shape[i];}if(this->dim == 1){  // 如果是一维的ndarray// 将输入数据转换为一维数组this->Vector = new T[this->lens[0]];for (int i = 0; i < this->lens[0]; ++i) {this->Vector[i] = inputNdarrayDataPtr[i];    }// 矩阵则赋为空指针this->Matrix = nullptr;}else if(this->dim == 2) {  // 如果是二维的ndarray// 将输入的数据转化为二维数组this->Matrix = new T*[this->lens[0]];for (int i = 0; i < this->lens[0]; ++i) {this->Matrix[i] = new T[this->lens[1]];for (int j = 0; j < this->lens[1]; ++j){this->Matrix[i][j] = inputNdarrayDataPtr[i * this->lens[1] + j];}}// 向量则赋为空指针this->Vector = nullptr;}      }
};

由于这几个算法目前基本能满足我的要求,我并未特别优化这些代码,如果朋友们有想法和建议,欢迎私信交流。

测试

将上面两个算法放置在工具cpp文件中,需要用到直接调用即可,下面来测试算法的执行结构:输出维度输出形状输出数组

#include <pybind11/pybind11.h>
#include <pybind11/numpy.h>
#include "pybind11_tools.cpp"namespace py = pybind11;// 测试输出数组
py::array_t<double> Ndarray(py::array_t<double>& inputArray){NdarrayToCppArray<double> InputArray(inputArray);int dim = InputArray.dim;py::array_t<int> outputArray;if (dim == 1){double* result = InputArray.Vector;int len = InputArray.lens[0];outputArray = CToNdarray(result, len);}else if (dim == 2){double** result = InputArray.Matrix;int row = InputArray.lens[0];int col = InputArray.lens[1];outputArray = CToNdarray(result, row, col);}return outputArray;
}// 测试输出维度
int Dim(py::array_t<double>& inputVector){NdarrayToCppArray<double> InputVertor(inputVector);return InputVertor.dim;
}// 测试输出形状
py::array_t<int> Shape(py::array_t<double>& inputVector){NdarrayToCppArray<double> InputVertor(inputVector);int len = InputVertor.dim;int* Length = InputVertor.lens;py::array_t<int> outputArray = CToNdarray(Length, len);return outputArray;
}PYBIND11_MODULE(tryPybind, m) {m.def("ndarray", &Ndarray);m.def("ndim", &Dim);m.def("shape", &Shape);
}

之所以没有定义模板是因为在pybind11中,模板函数无法直接导出为Python可调用的函数,所以需要用到什么类型就定义什么类型,由于numpy的浮点数类型默认是np.float64,所以便定义双精度double数组来装载ndarray。配置生成后,编写Python脚本:

import numpy as np
import tryPybinda = np.random.rand(4, 3)print('调用python代码')print('维度: ' +  str(a.ndim))
print('形状: ' + str(a.shape))
print('数组: ' + str(a))
print('类型: ' + str(type(a)))print('调用C++代码')print('维度: ' + str(tryPybind.ndim(a)))
print('形状: ' + str(tryPybind.shape(a)))
print('数组: ' + str(tryPybind.ndarray(a)))
print('类型: ' + str(type(tryPybind.ndarray(a))))

输出结果:

shuchu

这样便实现了先把一个ndarray转为一个C++原生数组,进行运算,再转为一个ndarray,进行输出,如果需要C++做矩阵运算,只需在转为C++数组后加入算法即可,具有很强的拓展性,并且观察python脚本后不难发现,调用C++和Python的代码可以说是无缝衔接!


补充:像 py::array_t a(py::array_t input1, py::array_t input2) 这样类型结构的函数,返回值和参数都是ndarray,而事实上,传参除了可以传入ndarray外,还可以传入Python的列表(list)元组(tuple),但是返回值还是ndarray,那如果需要返回值为 list 或者 tuple的话,可以考虑使用 std::vectorstd::tuple 这两种数据结构(二者都是 C++ 标准库中的一个容器类模板,可以存储数据)重新定义转换函数,这样的话非常麻烦且难管理,既然C++和Python的代码可以无缝衔接,那不如直接使用Python原生代码 list() tuple() 对返回的ndarray直接转化为你需要的数据结构来的方便。

以下这篇博客一个实际的例子说明该项技术(ndarray和C++数组的相互转换)所带来的拓展性和便利性,以及在Python中调用C++代码所带来的巨大优势:
pybind11:对比C++和Python解线性方程组的速度

这篇关于pybind11:实现ndarray转C++原生数组的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/504117

相关文章

Oracle查询优化之高效实现仅查询前10条记录的方法与实践

《Oracle查询优化之高效实现仅查询前10条记录的方法与实践》:本文主要介绍Oracle查询优化之高效实现仅查询前10条记录的相关资料,包括使用ROWNUM、ROW_NUMBER()函数、FET... 目录1. 使用 ROWNUM 查询2. 使用 ROW_NUMBER() 函数3. 使用 FETCH FI

Python脚本实现自动删除C盘临时文件夹

《Python脚本实现自动删除C盘临时文件夹》在日常使用电脑的过程中,临时文件夹往往会积累大量的无用数据,占用宝贵的磁盘空间,下面我们就来看看Python如何通过脚本实现自动删除C盘临时文件夹吧... 目录一、准备工作二、python脚本编写三、脚本解析四、运行脚本五、案例演示六、注意事项七、总结在日常使用

Java实现Excel与HTML互转

《Java实现Excel与HTML互转》Excel是一种电子表格格式,而HTM则是一种用于创建网页的标记语言,虽然两者在用途上存在差异,但有时我们需要将数据从一种格式转换为另一种格式,下面我们就来看看... Excel是一种电子表格格式,广泛用于数据处理和分析,而HTM则是一种用于创建网页的标记语言。虽然两

Java中Springboot集成Kafka实现消息发送和接收功能

《Java中Springboot集成Kafka实现消息发送和接收功能》Kafka是一个高吞吐量的分布式发布-订阅消息系统,主要用于处理大规模数据流,它由生产者、消费者、主题、分区和代理等组件构成,Ka... 目录一、Kafka 简介二、Kafka 功能三、POM依赖四、配置文件五、生产者六、消费者一、Kaf

使用Python实现在Word中添加或删除超链接

《使用Python实现在Word中添加或删除超链接》在Word文档中,超链接是一种将文本或图像连接到其他文档、网页或同一文档中不同部分的功能,本文将为大家介绍一下Python如何实现在Word中添加或... 在Word文档中,超链接是一种将文本或图像连接到其他文档、网页或同一文档中不同部分的功能。通过添加超

windos server2022里的DFS配置的实现

《windosserver2022里的DFS配置的实现》DFS是WindowsServer操作系统提供的一种功能,用于在多台服务器上集中管理共享文件夹和文件的分布式存储解决方案,本文就来介绍一下wi... 目录什么是DFS?优势:应用场景:DFS配置步骤什么是DFS?DFS指的是分布式文件系统(Distr

NFS实现多服务器文件的共享的方法步骤

《NFS实现多服务器文件的共享的方法步骤》NFS允许网络中的计算机之间共享资源,客户端可以透明地读写远端NFS服务器上的文件,本文就来介绍一下NFS实现多服务器文件的共享的方法步骤,感兴趣的可以了解一... 目录一、简介二、部署1、准备1、服务端和客户端:安装nfs-utils2、服务端:创建共享目录3、服

Java 字符数组转字符串的常用方法

《Java字符数组转字符串的常用方法》文章总结了在Java中将字符数组转换为字符串的几种常用方法,包括使用String构造函数、String.valueOf()方法、StringBuilder以及A... 目录1. 使用String构造函数1.1 基本转换方法1.2 注意事项2. 使用String.valu

C#使用yield关键字实现提升迭代性能与效率

《C#使用yield关键字实现提升迭代性能与效率》yield关键字在C#中简化了数据迭代的方式,实现了按需生成数据,自动维护迭代状态,本文主要来聊聊如何使用yield关键字实现提升迭代性能与效率,感兴... 目录前言传统迭代和yield迭代方式对比yield延迟加载按需获取数据yield break显式示迭

Python实现高效地读写大型文件

《Python实现高效地读写大型文件》Python如何读写的是大型文件,有没有什么方法来提高效率呢,这篇文章就来和大家聊聊如何在Python中高效地读写大型文件,需要的可以了解下... 目录一、逐行读取大型文件二、分块读取大型文件三、使用 mmap 模块进行内存映射文件操作(适用于大文件)四、使用 pand